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On computing the absolute geostrophic velocity spiral 

by David W. Behringer1 

ABSTRACT 

Recently, Stommel and Schott (1977) have proposed a method for computing absolute geo­
strophic current spirals from observations of the density field alone. Some applications of the 
method have led to ambiguous results in which the computed spirals have depended on the 
depth range of the data used. It is shown that the method may be recast into a form which em­
phasizes its character as a synthesis of the dynamic method and the method of isopycnal analy­
sis. In this form the computations require flow directions from the mapping of potential vorticity 
on isopycnal surfaces. These directions are a large source of error in the calculations and the 
likely cause of the aforementioned ambiguities. It is shown that the original method is badly 
biased in its response to the directional errors. Two variations on the method are presented 
which are less biased and which give different results than the original method. The discussion 
is illu strated by an example based on data centered at 28N and 27°30'W in the North Atlantic. 
Estimates of the errors associated with each method are presented. 

1. Introduction 

In the classical dynamical method, the vertical shear of the geostrophic velocity 
is determined from observations of the horizontal gradients in the field of density. 
The problem remains to determine an absolute reference velocity, and this problem 
is frequently solved by arbitrarily assuming a level of no motion. Recently, Stommel 
and Schott (1977) have proposed a quantitative solution which enables the determi­
nation of an absolute reference velocity from observations of the density field alone, 
the same data that are required by the dynamical calculation itself. Applications of 
their technique yield promising results, but in some instances the absolute velocity 
computed at a constant reference level depends on the depth range of data used in 
the calculation (Schott and Stommel, 1978). This ambiguity was not resolved. 

The Stornmel and Schott (1977) method can be recast in a form which empha­
sizes its character as a synthesis of the dynamical method and the method of isopyc­
nal analysis. In this form the computation uses absolute flow directions deduced 
from the mapping of potential vorticity on isopycnal surfaces. If the direction 
changes with depth, then the directions at two depths and the geostrophic shear be-

1. National Oceanic and Atmospheric Administrati on, Atl antic Oceanographic and Meteorological 
Laboratori es, 15 Rickenbacker Causeway, Mi ami, Florida, 33149, U.S.A. 
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tween them are sufficient to determine a reference velocity. However, if the direc­
tions are subject to error, the reference velocity will depend on the pair of depths 
chosen. In order to reduce the influence of such errors on the reference velocity, 
Stommel and Schott employ an error minimization scheme which extends over a 
range of depths. However, the reformulation makes it clear that the minimization is 
biased by the parts of the depth range where the velocities are largest. Therefore, 
two simple variations on the original method were developed to give less biased re­
sults. When all three methods were applied to the same set of data, the two varia­
tions resulted in similar reference velocities which differed from the result of the 
original method. 

In the following discussion, the three methods are briefly described and then ap­
plied to a sample set of data from the North Atlantic. The expected error associated 
with each method is also discussed. 

2. Theory 

For steady flow in an ideal and incompressible ocean, density, potential vorticity, 
and the Bernoulli function are materially conserved (Welander, 1971). Because 
intersections of material surfaces are streamlines, mapping isolines of potential vor­
ticity or Bernoulli function on isopycnal surfaces is equivalent to mapping three­
dimensional streamlines. If the dynamics are geostrophic, then the potential vor-

ticity, PV = f , can be determined from the field of density alone, and it 

becomes a useful parameter in isopycnal analysis (Behringer, 1972)2. The geo­
strophic Bernoulli function, B = p + gpz, is not immediately useful because its com­
putation requires knowledge of a reference pressure. However, in principle stream­
lines deduced from isolines of the Bernoulli function on isopycnal surfaces (B / p­
streamlines) must match identically those deduced from isolines of potential vorticity 
(PV I p-streamlines). This is true because any pair of material properties uniquely 
determines the flow field . The identity of the two sets of streamlines is a physical 
constraint on the computation of the reference velocity. 

The isolines of potential vorticity on isopycnal surfaces can be represented by the 
vector, 

t = v'PV X v'p (1) 

which is everywhere parallel to the field of streamlines. It follows from equation (1) 
that if <p is the angle between the horizontal projection of a streamline and the east­
ward direction, then 

tan <p = - o(PV, p) I o(PV, p) 
o(x, z) cl(y, z) 

(2) 

2. The notation is standard. However, defini tions of all symbols are given in the appendix . 
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is the Jacobian. An equation for the horizontal velocity components is obtained by 
setting the ratio of the northward to eastward components equal to tan cp: 

v/ u=tancp. (3) 

If the velocities are written as sums of the absolute reference velocities, u0 and v0 , 

and the relative geostrophic velocities, u' and v', then equation (3) becomes 

Vo + v' + , - tan cp = 0. 
Uo U 

(4) 

Because the relative geostrophic velocities are determined by the dynamical method, 
the reference velocities can be determined from any pair of equations (4), as long as 
cf> changes with depth. 

This analysis can be modified to account for the compressibility and unsteadiness 
of actual ocean flow if it is assumed that the mean flow is parallel to mean surfaces 
of constant potential density. The necessary changes are the replacement of in situ 
density by potential density in the calculation of the absolute directions (see ap­
pendix) and the treatment of all effects of time-dependent motion on the density 
observations as noise. Most observations will be contaminated by such noise and 
thus equation (4) will not be satisfied exactly. Therefore, rather than using only a 
pair of equations (4) to compute reference velocities, it is better to choose the veloc­
ities which minimize the error in the difference expressed by equation (4) over a 
range of depths. Three simple ways of doing this are as follows. 

The first procedure is to choose u0 and v0 to minimize the expression, 

S1 = l {(v o + v') - (uo + u') tan cp} 2 (5) 

summed over N discreet depths. This is equivalent to the Stommel and Schott (1977) 
method. The sum is easily minimized by any of several standard techniques; in the 
present study it was done by determining u0 and Vo as the coefficients for the linear 
regression of (v' - u' tan cp) on tan cp. The flaw in choosing to minimize S1 is that 
the procedure is biased in its response to error in tan cp. To understand the bias, 
suppose that the true reference velocity is somehow known a priori , then, assuming 
that the errors in tan cp are comparable throughout the depth range of the computa­
tion, disproportionately large contributions to S1 will occur where the velocities, 
(u

0 
+ u') and (v0 + v'), are largest. Because S1 will be minimized only when all con­

tributions to S1 are of similar magnitude, minimizing S1 cannot recover the true 
reference velocity. 

A second procedure minimizes the sum: 
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{ 
V + v' }

2 

S2 = 0 
- tan <p 

Uo + u' 
(6) 

The hazard in minimizing S2 is that an error in cp where the flow is nearly meridional 
(<p = ± n/2) will dominate the contributions to S2 and badly bias the determination 
of the reference velocity. However, away from regions of purely meridional flow, 
the second procedure will give less biased results than the first. 

The third and least biased procedure minimizes the sum: 

S3 = { tan-
1 

( :: : :: ) - cp } 
2 

(7) 

The problem here is that a subjective judgement must be made to determine the ab­
solute direction (cp or cp + TT) when only tan cp is computed from the data. The sums, 
S2 and S3, are more difficult to minimize than S1, but it can be done readily enough 
on a computer using techniques of curvilinear regression. All regression techniques 
used in this study are discussed by Snedecor and Cochran (1967). 

A judgment of the quality of a calculation can be made from an estimate of the 
95 % confidence limits on the reference velocity. This judgment can be further 
guided by comparisons of the flow directions, cp, defined by equation (2), and the 
directions, <pg, determined by the computed absolute velocity components: tan <pg 
= v/u. These comparisons may be based on the error sums, S2 and Sa, which can 
be evaluated once the reference velocity has been determined. Two measures will be 
used: the reduction in variance of tan cp, 

RV (tan cp) = 1 -{ S
2
t:.tan<I> / s\an</>} , 

and the reduction in variance of cp, 

(8) 

(9) 

where s\an<t> and S
2<t> are the sample variances of tan cp and cp, respectively, and 

S
2t:.tanct> = Sd (N-2) and S2c,.<t> = S3/ (N-2) are the sample variances of (tan cp - tan 

<pg) and (cp - <pg), respectively. The values of these expressions will be less than + 1 
and will approach + 1 as the differences between cp and <pg become smaller. Values 
approaching + 1 will also imply that the shorter scale variations in cp are small com­
pared to the overall turning of the spiral, because, as experience suggests, cf>u is a 
much smoother function of depth than cp. The expressions (8) and (9) can be evalu­
ated regardless of how the reference velocity has been determined, but they will be 
maximized when the reference velocity has been obtained by minimizing S

2 
and Sa, 

respective! y. 
It was stated earlier that the BI p-streamlines should be identical with the PV / p­

streamlines. The direction, cp n, of a B / p-streamline is given by 
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which reduces to 

Behringer: Absolute geostrophic velocity spiral 

tan </>B = - iJ(B, p) / iJ(B, p) 
iJ(x, z) iJ(y, z) 

tan <pB = - _!_p_/ iJp • ax -­
i)y 
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(10) 

(11) 

Because the pressure, p, cannot be established, </>B cannot be determined inde­
pendently. However, once the reference velocity has been computed, </>B can be 
found diagnostically: </>B = cf>u = tan-1 v/ u. In this way the expressions (8) and (9) 
also test whether a calculation is self-consistent with the constraint requiring the 
identity of the two kinds of streamlines. Obviously, tests of self-consistency are 
much more limited than what would be possible if </>B could be determined inde­
pendently. 

3. Sample computations 

To illustrate the three methods, data have been selected from hydrographic sta­
tions in the eastern North Atlantic. They are Discovery stations 3595 through 3599 
along 24 ° l 5'N and 3636 through 3640 along 32N; sections and profiles of these 
temperature and salinity data can be found in Fuglister's (1960) atlas. The data are 
part of the data used by Schott and Stommel (1978) at their site B. 

The temperature and salinity data at each station were first interpolated to stan­
dard depths. Then the five stations at each latitude were reduced to a pair of " least 
squares stations" based on linear regressions of temperature and salinity with longi­
tude. The reduced stations are at the corners of a rectangle defined by the latitudes 
24°15'N and 32N and the longitudes 24°30'W and 30°30'W. They are assumed to 
represent mean conditions with much of the noise due to measurement error and 
eddy motion removed. 

The potential density used in the computations is referred to 1300 meters rather 
than to surface (see appendix). The directions of flow were then computed using a 
second order difference approximation to equation (2). The results are shown in 
Figure 1 as the angle measured with respect to the eastward direction. The smooth 
curve in Figure 1 is a third order polynomial fitted to the computed directions be­
tween 75 and 2000 meters. 

The relative velocity hodograph, computed by the dynamic method from the re­
duced stations, is shown in Figure 2. The computed directions are also shown, repre­
sented by straight lines on the u, v-plane and intersecting the hodograph at the ap­
propriate depths. The intersection of a pair of directional lines represents the origin 
for the hodograph which would be determined by solving the corresponding pair of 
equations (4) for the reference velocities. Ideally there would be a single intersection 
for all of the lines; in fact, there is a great amount of scatter. 
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Figure I. Absolute flow directions. The broken line connects the raw directions computed from 
equation (2). The smooth curve is a third order polynomial fitted to the raw directions for 
the depths between 7 5 and 2000 meters. 

It is apparent in Figure 2 that the directional lines fall into distinct groups which 
are associated with particular depth ranges. Some groups have a strong focus at a 
single intersection (e.g., 1200-1500 meters) while others have little or no focus (e.g., 
600-1000 meters). Table 1 li sts the reference velocities at 1500 meters as they are 
computed by the three different procedures for several of these groups. Two points 
are clear; first, as expected, the three procedures give similar reference velocities 
only for groups with well focused directions and, second, the reference velocities are 

Table I. Reference velocities (uo, vo) at 1500m in cm/sec. 

Depth range Via procedure which minimizes sum: 
(m) S1 S2 Sa 

250- 400 0.38, 0.69) ( 0.34, 0.60) ( 0.34, 0.62) 
250- 500 0.36, 0.59) ( 0.23, 0.33) ( 0.07, 0.09) 
600-1000 0.44, 0.45) ( 8.25, 2.15) 
800-1000 0.65, 0.42) ( 0.70, 0.43) 0.71, 0.43) 

1000-1200 (-0.04, 0.18) (-0.04, 0.18) (- 0.04, 0.18) 
1200-1500 ( 0.27, -0.03) ( 0.29, -0.03) ( 0.28, -0.03) 
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Figure 2. The relative velocity hodograph. The straight lines represent the raw flow directions 
computed from equation (2); they intersect the hodograph at the appropriate depths. The 
depth labels are in meters. 

very different for different groups. The second point has been noted previously by 
Schott and Stornrnel (1978). 

In the present example, the clustering of the directional lines does not appear to 
improve the overall focus of the intersections. On the contrary, the clustering seems 
to degrade the focus: most intersections within a group lie to the left of the hodo­
graph, while most intersections between groups lie to the right (Fig. 2). Thus, if the 
underlying assumption of geostrophic flow confined to isopycnal surfaces is valid for 
the entire depth range, then it is unlikely that the clustering of the directional lines 
has any physical significance for the mean flow . It is more likely that it is the result 
of noise in the computation of the directions from equation (2), an equation which 
involves second order derivatives of density. 

Because of the noisy flow directions, it is important to use a large depth range 
in the computations so that many standard levels are included and so that the over­
all change in <p is as large as possible. Table 2 lists the reference velocities at 1500 
meters computed by the three methods for the depth range of 250 to 1500 meters. 

Table 2. Reference velocities at 1500 m based on the depth range 250-1500 m. Units are 

cm/ sec. 
Smoothed 

Procedure ll o Vo RV(tan<f,)* RV(q,) * ll o Vo 

s, 0.15± 0.12 0.22± 0.13 -5.50 - 8.00 -0.32 0.19 
s, -0.20± 0.24 0.14± 0.12 0.58 0.61 -0.34 0.18 

S, -0.35± 0.31 0.18± 0.10 0.51 0.70 -0.37 0.18 

* for this example, S'un¢ = 1.0 and S'¢ = 32.6. 
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Figure 3. The absolute velocity hodographs computed by the three methods described in the 
text. The points mark the standard depths (250-1500 m) used in computations. The total 
range shown is 50 to 2500 meters. Error bars represent the 95% confidence limits. 

The origins for the hodograph corresponding to these results are shown as num­
bered points in Figure 2, and the absolute hodographs are shown in Figure 3. The 
standard regression techniques used to compute the reference velocities also permit 
a formal estimate of the expected errors. Those shown represent the 95 % confidence 
interval based on the deviation from regression and the t-distribution, assuming 12 
degrees of freedom from the 14 standard levels in the calculation. Whether the as­
sumption of 12 degrees of freedom is justified and, thus, whether the error estimates 
have meaning will be discussed later. 

Table 2 shows that the east/ west reference velocities at 1500 meters are barely, 
if at all, significantly different from zero. Also, the first method gives eastward veloc­
ity at 1500 meters which is significantly different from westward velocities given by 
other methods. This difference is the result of the bias of the first method toward 
matching the directions in the upper water column where the velocities are largest. 
The bias can be seen in Figure 2 if one imagines radial lines drawn from an origin 
at point 1 to intersections with the hodographs at various depths. 

The differences between such radial lines and the directional lines would be rela­
tively small at shallow depths but would increase sharply with increasing depth. 

The reductions in variance of tan <p and <p listed in Table 2 show that the first 
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method badly fails both tests. On the other hand, each of the other methods does 
well by either test, not only by the test it is best suited for. 

The last column of Table 2 shows that for this particular example all three meth­
ods give similar results when smoothed directions are used. The smoothed direc­
tions are taken from the polynomial fit shown in Figure 1. 

4. Discussion 

A few conclusions can be drawn from this study with some certainty. First, the 
physical assumptions which form the basis for the computations require that PV I p­
and B I p-streamlines must be identical. Although the B / p-streamlines cannot be 
determined independently of the computed velocity spiral, the second and third 
methods assure results which are more self-consistent with this constraint than the 
results of the first method. 

Second, noise in the flow directions is the cause of the differences in the results 
of the three methods and the differences in the results when different depth ranges 
are used. In the present example, both kinds of differences were greatly reduced 
when a smoothed representation of the directions was used. 

Third, the formal estimates of the errors in the reference velocities shown in 
Table 2 are large, but they should be larger. The computations were made under 
the assumption that the errors in the directions at each of the 14 standard depths 
were independent, thus allowing 12 degrees of freedom in the estimates of the veloc­
ity errors. This assumption is not justified, since much of the error in the data is 
likely to be due to the influence of eddy motion extending well into the main thermo­
cline. A rough attempt to improve the error estimates can be made by reducing the 
number of standard levels used in the calculation to those thought to be independent. 
A subjective choice of five levels (500, 800, 1000, 1200 and 1500 meters) was made 
on the grounds that they were approximately evenly spaced and that the computed 
raw directions alternate back and forth across the mean trend of the directions (Fig. 
1). Recomputing the reference velocities using the second method, the results were 
u0 = (-0.20± 0.69) cm/ sec and v0 = (0.17± 0.31) cm/ sec. A comparison of these 
numbers with the second line of Table 2 shows that the 95% confidence limits have 
more than doubled. 

Beyond these essentially technical conclusions, any statements about the compu­
tations must be tempered by the large uncertainties in the results. However, some 
comparisons to other observations are encouraging. The second and third methods 
give a westward flow at 1200 meters, the depth at which one expects to find the west­
ward outflow of the Mediterranean Sea. A troublesome aspect of the results of the 
fir st method and of the earli er Stommel and Schott (1977) results was the eastward 
velocity at this depth and location. 
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Figure 4. The vertical velocity in units of JO-< cm/ sec. See the text for an explanation of the 
two curves. 

In addition, the comparison is good between the vertical velocity computed from 
the conservation law for potential density and from the equation: 

w = Wo + f /3/ f vdz . (12) 

Figure 4 shows the two curves superposed. The smooth curve corresponds to equa­
tion (12); the integration constant is chosen so that the mean difference between the 
curves is zero for the 250-1500 meters depth range. Leetmaa (personal communica­
tion) has computed the vertical velocity at the surface due to Ekman pumping. For 
the area of the present study, his average value of -1.9 X 10- 4 cm/ sec compares 
very well with the value of - 2 X I0- 4 computed from equation (12). 
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APPENDIX 

The equations of motion for steady geostrophic, and hydrostatic flow are: 

{)p 
-pfu=a;-, 

{)p 
-pg=az, 

the continuity equation for compressible flow is: 

a a a 
(pu) + ay (pv) + az (pw) = 0 , 

and the conservation equation for potential density is: 

v • 'vpe = RP 

469 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

where x, y and z are the eastward, northward and vertical (positive upward) coordinates, respec­
tively, and u, v, and w are the corresponding components of the vector velocity, v; the pressure 
is p, the in situ density is p, and the potential density is P•· The residual, Rr, includes the effects 
of heating, and mixing, but here it is assumed that R . is zero and that P• is materially conserved. 

Cross-differentiating equations (A. I) and (A.2) and substituting from equations (A.3) through 
(A.5) leads to a conservation equation for potential vorticity : 

( 
V • 'v 

ap. ) 
f az =R,. 

where 

( 
ap ap. ap ap. ) 

R,. = g/ p ax ay - aya;- . 
Next, let P• represent a pressure function which satisfies the equation 

ap. 
a-;:=-gpe 

(A.6) 

(A.7) 

(A.8) 

subject to the condition that P• = p at z,, the reference level for P•· Using equation (A.8) in 
conjunction with the equations (A.I) through (A.5), allows the derivation of the Bernoulli 
equation: 

v • 'v (pe + gpez) = Rn (A.9) 

where 

{)[ {)[ 
R =u--+v--

8 ax {)y 

and 

I = g f ;r (p - pe) dz . 

When considering the flow at depths greater than a few hundred meters, P• will be more 
nearly a material property if it is referred to a deep level rather than to the sea surface (Lynn 
and Reid, 1968). A deep reference level is also important to insure that R,. and Rn are suffi­
ciently small that potential vorticity, PVe, and the Bernoulli function, Be, are approximately 
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Table 3. Normalized values of R •• and Rs and differences in computed flow directions for P• 
referred to 1300 m and to O m. 

R •• for a Rs for a 
reference level of: reference level of: 

Depth 1300 m 0 m !::,.tj, 1300m 0 m 
(m) 

200 .01 0 2 -.02 .01 
400 0 0 - 1 -.04 .02 
800 -.09 .09 10 - .07 .07 

1000 - .06 .22 9 -.04 .04 
1200 - .04 .51 17 0 .08 
1500 .05 .84 17 0 .36 

conserved. Table 3 lists Rv• and Rs at several depths when P• is referred to 1300 meters and to 
0 meters. The numbers have been normalized. For example, R •• was divided by the flow speed 
times the spatial rate of change of PVs parallel to the P• surface and normal to the flow direc­
tion. A value of ± 1 implies that the change in PVs is as great in the downstream direction as 
in the cross stream direction. The differences in the computed directions for the two reference 
levels are also shown. At 800 meters and below, the flow directions computed when P• is re­
ferred to 1300 m are systematically larger than when P• is referred to O meters. 
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