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ABSTRACT 

For time-periodic two-dimensional water waves of small amplitude, it is shown that a 
static balance exists between the mean dynamic pressure force at the bottom, the gradient 
of the mean sea level, and the d ivergence of the radiation-stress tensor. The balance holds 
for quite arbitrary wave pattern and bottom variati on so long as dissipation and steady cur
rents are insignifi cant. This is the further generali zation of a result obtained by Longuet
Higgins (1972) for the gradual refr action of a progressive wave where the bottom pressure 
is unimportant. 

r . Introduction. The concept of the radiation stresses (Longuet-Higgins 
and Stewart r 960, 196 r, r 962, r 964) has advanced the understanding of a 
number of nonlinear phenomena in water waves. These stresses, arising from 
averaging over the wave flu ctuations and integrating over the water depth, 
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represent physically the excess mean momentum fluxes due to waves. Among 
many applications, they have been used to show for certain special cases that 
the variation in the radiation stresses is in static equilibrium with the gradient 
of the mean sea level. This balance is valid up to the second order in wave 
slope, i.e., O(ka)2, with the conditions that extraneous currents do not exceed 
O (ka)2 and that dissipation is negligible. These special cases are: (i) a progres
sive wave refracted by a variable bottom of gentle slope [Longuet-Higgins 
and Stewart 1962, for one-dimensional topography, h = h(x); Longuet
Higgins 1972, for two-dimensional topography, h = h(x,y)], and (ii) a standing 
wave on a horizontal bottom (Longuet-Higgins and Stewart 1964). 

In this note a similar result is deduced for a quite general periodic wave 
system and bottom topography. In particular we show that in the mean the 
sea is in static equilibrium between the gradient of the mean sea level, the 
divergence of the radiation-stress tensor, AND the horizontal force due to the 
mean dynamic pressure at the bottom. Applied to nearshore problems, this 
result implies that the wave fluctuations do not produce any current-driving 
force outside the surf zone. 

An example in which the bottom-pressure force is important is given. Con
ditions under which this force can be neglected are then discussed for slowly 
varying bottoms. Finally, certain more explicit formulae for the mean quan
tities are given for the case of constant depth but arbitrary monochromatic 
waves. 

2. The Conservation of Averaged Momentum. The approach taken here 
follows the general derivation by Phillips (1966: § 3.6) who, however, neg
lected in the averaged momentum equation a term that is important for the 
present discussion. It is therefore worthwhile to retrace some of his steps in 
order to bring out this omission. We assume that the fluid is inviscid and in
compressible so that the instantaneous equations of motion are 

(aq + +) e fJt+q·"ilq =-"ilp-egez, 

+ 
"ij· q = 0 

(2.1) 

(2.2) 

for -h(x,y) ,; z "' C(x,y,t), where C denotes the free-surface displacement from 
z = o. Denoting by u/7., ex = I ,2, the horizontal and w the vertical components 
of q, the boundary conditions are 

p = o, (2.3) 

on z = C, and 
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on z = -h. 

Mei: Averaged Momentum Balance 

oh 
up- = -w oxp 
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(2.5) 

We consider the case where the fluctuations are strictly periodic in time and 
are of the first-order significance, O(ka), and where the mean currents, if any 
(as the result of nonlinearity or else), are of the second order only. The hor
izontal length scales of the wave fluctuations, of the mean quantities, and of 
the bottom variation are assumed to be the same so that diffraction may be in-

cluded in general. Define f to be the time average of q at a point and q' the 
fluctuating part at the same point, i.e., 

q = f (x,y,z) + q' (x,y,z,t), (2.6) 

where f = O(ka)2, q' = O(ka). Integrating a horizontal component of (2.1) 
vertically from z = -h to z = (, using the boundary conditions (2.3-2.5), 
and taking the time averages, it follows that, exactly, 

where the overhead bar denotes the time mean and the subscript ( h denotes 
the value of ( ) on the bottom z = -h. This is eq. (3.6.7) in Phillips (1966). 
At this stage, Phillips took Pn to be just the hydrostatic pressure on the bottom, 
hence Pn = e g ( [ + h ). This is not the case in general and the difference, being 
the mean dynamic pressure on the bottom, 

(2.8) 

is in general of O(ka)2, as will be shown hereafter. Inserting (2.6) and (2.8) 
into (2.7) and anticipating that C = O(ka)2, it follows that 

where 

(2. IO) 

are the components of the radiation-stress tensor. The term P11,oh/oxa is absent 
in Phillip's result [1966: eq.(3.6.11)] and in the special cases cited before. 
It is just the horizontal force due to the mean dynamic pressure acting on the 
fluid by the sea bottom; it may be calculated by first integrating the vertical 
component of (2.1): 
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a ~c a ~c p(x,y,z,t) = eg(C-z) +e wdz + e ~- upwdz-ew•. 
ut -z uxp z 

( 2 . I I) 

Taking the time averages and letting z = - h, we have 

- - ~o ou'pw' --
P1i = Pn -eg(C +h) = e --~-dz -e(w'1i)2 + O(ka)3, 

-k uxp 
( 2 . I 2) 

which is O(ka)2 and nonzero in general. It is pertinent for experiments to note 

that, to measure the mean sea level, f, we cannot in general just take the 
reading of the mean bottom pressure without further adjustment. The shoaling 
progressive wave on a mild beach (Bowen et al. 1968) is an exception (Lon
guet-Higgins and Stewart 1962; see also § 2b below). 

2a. An Example-Stokes Standing Edge Wave. As an illustration, we take 
the Stokes standing edge wave on a sloping beach as the first-order solution. 
Let the bottom be given by h = - x tan O, o < 0 < n/2, the frequency by w, 
and the amplitude at the shore by a. The first-order velocity potential and 
the free-surface height are (Lamb 1932) 

cp = _ aek (zsinlJ-xcos0) cos ky, 

C' = ae-k:r.coslJ cos ky, 

( 2. I 3) 

( 2.14) 

with the dispersion relationship w2 = gk sin 0. Calculating the velocity com
ponents by means of 

( , , ') ( a u,v ,w = ox' 
a 
oy' ( 2 . I 5) 

and substituting into ( 2. IO) and ( 2. I 2), it follows after some algebra that 

= + _ _ e 2 kx cos F {Sxx} rfcos2 0 cos2 ky-1 /2} ek (ga)2 - I) 

Syy l sin2 ky-1/2 2 w ' 

S xy = S yx = ;_-- T cos O sin 2 ky, 

P1i = ( g!aY [e- 2 kxcoslJ ( cos2 0 cos• ky- ;_--cos 2 ky ) - ;_--e-2 kxsecO], 

where 

T =- -
e (gka)z e-2 kx cos 0 - e-2 kx sec 0 

2 w 2k sin O ' 

(2.16a) 

(2. 166) 

( 2. I 7) 

( 2. I 8a) 



1973] Mei: .Averaged Momentum Balance 101 

F = kh ( cos1 0 cos2 ky - i cos 2 ky) + i sin 0 cos• ky. ( 2. I 8b) 

The mean sea level is most simply calculated from the Bernoulli equation 

- { aw' 1 - - -} - gC = C' 8t + 2 [(u')' + (v')• + (w')z] z = o' l ( 2.19) 

All the above quantiti es, being the result of quadratic nonlinearity, vary in y 
with the period half that of the edge-wave length in the longshore direction. 

We have checked after straightforward but tedious algebra that these quan
tities indeed satisfy ( 2.9). 

2b. Slowly Varying Depth. The dynamic-pressure term in (2.9) can some
times be relatively insignificant when compared with the remaining two terms. 
Consider ( 2. 1 2) for a slowly varying bottom so that ( 1 /kh) (8 h/8xa) « 1, and the 
higher derivati ves of h are small. The term (w' h)' is O [8h/8xa) ka]• by virtue 
of (2.5) and hence is negligible. In general the length scale of the mean quan
tities can still be comparable to the wavelength depending on the complexity 
of the waves (e.g., standing waves); hence l\(8h/8xa) is only 8h/8xa times 
smaller than the remaining terms. Further if the wave is progressive (simple 
refraction, L onguet-Higgins and Stewart 1962, Longuet-Higgins 1972), 
then for constant depth,[, Sa/3 = O(ka)2 , u'pw' = o (ka)2, and for gently vary
ing depth, the orders of magnitude of the three terms in (2.9) are, respectively, 

(ka)2 (lv' h 12 , (ka)2 lv' h I, 

where v' == a ;ax, a ;a y. Hence, the dynamic pressure on the bottom IS m
signi ficant and the static balance is merely between the gradient of the mean 
sea level and the divergence of the radiation-stress tensor. 

2c. Constant Depth. For h = constant, more explicit information can be 
obtained from the general result ( 2.9 ). First of all, the dynamic pressure does 
not give rise to a horizontal force and (2.9) becomes 

ac asa{J J -egh- - - = O(ka), 
ax/Y. axp 

(2.20) 

implying that the second term must be the gradient of a scalar. We verify this 
aspect by evaluating Sap in terms of the general complex amplitude function, 
'Y/ (x, y), which is related to the potential and the free-surface height by 
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ig chk(z+h) -cwt 
<p = - - 'Y/ --- e ' w chkh 

and is governed further by 

( fP {P) 
'ijl 'YJ + k2 'YJ = 0 Xl + 0 J1 'YJ + k2 'YJ = O 

and 
wi = gkthkh. 

Straightforward calculation in accordance with (2.10) yields 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

} (2.25) 

Now, the divergence of the first term may be manipulated as follows: 

_i_ Re O'YJ O'YJ* _ 8 1 (O'YJ O'YJ* + O'YJ* O'YJ) 
8~ 8~8~ 8~2 8~8~ 8~8~ 

= :: _i_ (~ 8 'YJ *) _ k2 'YJ • _ 8 'YJ • k2 'Y/ 
2 OX a oxp 8xp OXa OX a 

=:: [l'v 'Y/ 11 - k1 I 'Y/ 11]' 
2 ox°' 

which is a gradient vector. Use has been made of (2.23). Thus Sap may be 
written as 

Sap(x,y) = Cap+JapS(x,y), 

S(x,y) = eggh ll'v'Y/ll- w4 I 'Y/1] 
4 wi gi ' 

(2.27) 

(2.28) 

where Cap are constants. It follows that only the normal-stress components 
can be space dependent. Combining (2.27) with (2.20), we have 

_ h 8C -~ 
eg ox - ox ' a a 

(2.29) 

wh!c~ im_plies phys_i~lly tha~ the mean sea_ level change is balanced by the 
vanatlon m the radiation tensile or compressive stresses. By integrating (2.29), 
we have 
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c = _!__L(1'v11 \ 2 - w 4111 1•) 4 w• ., g' ., ' 

which can also follow from the averaged Bernoulli equation if the Bernoulli 
constant is taken to be zero. Since the one-term potential (2.21) describes the 
propagating mode of all free monochromatic waves that are a few wave
lengths away from localized obstacles or disturbances, the results obtained here 
are quite general. If the obstacles are vertical cylinders extending throughout 
the entire water depth, they apply everywhere outside the wall boundary layers. 

The following limiting cases are recorded below. Their derivations from 
the general formulae are straightforward and are therefore omitted. 

(i) Deep Water: kh)) 1, w2 =gk, 

S,x:r;/h = Sy11/h = e: j(l'v'l'/l'-k 2 \'l')\ 2) 

S:i: 11/h = Syz/h = o. 

(ii) Shallow water: kh<( 1, w=(gh)1l 2k 

Szz = eg(~ 18'1'/ 1• + l'l'/1') 
2 Plax 

S1111 =e/(¾.\~;\'+i'l'/1') 
eg I a'l'/a'I'/* 

S:i:11 = Syz = 2P Re ax ay 

l (2.31a,b) 

(2.32a,b,c) 

The mean sea level, [, for either case follows simply from (2.30) by inserting 
the proper dispersion relationship. 

(iii) Waves Incident Toward and Reflected from a Straight Wall: Let the 
x axis be the solid wall so that 

'I'/ = artµz cos vy, µ• +v2 = k2 ; (2.33) 

Szz = (!~a' [cos 2 vy (~ + shk2\h + :: sh~kh - pkh cth 2 kh) + l 
µ2 (1 kh ) kh ] 

+ k2 2 + sh 2 kh + sh 2 kh ' 

I 
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C= - -- 2 -ch" kh-1 cos2vy-1. - I ka• [( y• ) ] 
4 sh 2 kh k• 

These results have been worked out independently by P. L-F Liu in a related 
study. The two subcases of a pure progressive wave (µ = k, v = o) and a one
dimensional standing wave (µ = o, v = k) have been given by Longuet
Higgins and Stewart (1964). For standing waves there are some apparent dif
ferences between their formulae and ours; these differences can be reconciled 
by noting that (i) they defined Srx.rx. by including the hydrostatic pressure, 
- egh f, and (ii) they imposed a further condition that the horizontal spatial 
mean of f be zero, which implies a nonzero Bernoulli constant. 
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