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Some Exact Solutions to the Equations Describing
an Ideal-fluid Thermocline

Pierre Welander

Oceanographic Institution
Uniwversity of Gothenburg
Gothenburg 4, Sweden

ABSTRACT

The equations that describe a steady ideal-fluid motion have a first integral that expresses
a functional relationship between the potential vorticity P, the density g, and the Bernoulli
function B: P = F(g,B). By using this relationship, solutions to the ideal-fluid-thermocline
problem have been sought. An exact solution is obtained when P = a g + 6B +c. When it is
fitted to observed surface data, it gives a realistic meridional-density field: an inflection point
in the density profile, a sharp thermocline at finite depth at the equator, and a reversal of the
meridional-density gradient at a subtropical latitude. A more general case that can also be
solved exactly is P = F(a g+ 6B + ¢), with F arbitrary. Without a direct estimate of the dif-
fusive scale depth in the oceans, the idea of an ideal-fluid thermocline must be taken seriously
and this model ought to be explored further.

1. The Basic Equations. Consider the steady motion of an ideal and incom-
pressible fluid in a uniformly rotating system. The governing equations are:
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where p, g, v are pressure, density, and velocity, Q is the angular velocity of
the system, and @ is the potential of gravity (including the basic centrifugal

force of the rotating system); @/dt stands for the advective operator (;V) The
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above equations give material conservation of the potential vorticity P — (20
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+curl v)-Vp, as a special case of the theorem by Ertel (1942); furthermore,
&

the Bernoulli function, B = p + o® +1/,|v|? is conserved. If the streamlines
are represented by the intersection of the surfaces, » = constant, y = constant,
we can write P = P(y,x), B = B(y,y), and o = o(v,%). Elimination of 9,y
then gives a functional relationship between P, B, and g, say

P = F(g,B). (4)

This represents a general first integral of the equations.

2. Specialization in the Oceanic Case. In the open ocean, the Rossby num-
ber, /| L8, is small; L represents a horizontal scale and # a characteristic hori-
zontal speed. Eq. (1) can then be replaced with the geostrophic-hydrostatic-
balance equation:

0(20x2) =—Vp—oVO. (12)

The corresponding expressions for the potential vorticity and Bernoulli func-

tion are P = 2!3-Vg, B = p + ¢®. Further, the ocean is confined to a thin and
nearly spherical layer. This permits us to drop certain Coriolis accelerations and
geometric terms in the equations. The radius, 7, can be replaced with a standard
value, R, when it is undifferentiated; and the gravity force can be made con-
stant over the depth. Since the relative-density variations in the ocean are only
a few per mille, a (partial) Boussinesq approximation can be employed, replacing
the density with a standard value when it multiplies the acceleration terms.
These approximations are standard in most oceanic models. If we introduce
longitude 2, latitude @, and vertical distance z (counted positive upward) as
coordinates, (1a), (2), (3) assume a component form:
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