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THE EQUATIONS OF MASS CONTINUITY AND SALT CONTINUITY 
IN ESTUARIES1 

BY 

DONALD W. PRITCHARD 

Chesapeake Bay Institute, The John Hopkins University 

ABSTRACT 
Equations of mass (or volume) continuity and salt continuity are developed for 

the two- and one-dimensional estuary from the basic forms of these equations in 
three dimensions. The three cases of vertical, lateral, and sectional homogeneity 
are treated. Some misuses of the continuity concepts as applied to estuaries have 
appeared in recent literature. These are discussed. The effect of phase difference 
between tidal slack water and high tide on the nontidal drift in sectionally homo
geneous estuaries is presented. 

Introduction. Over the past ten years, occasional misuse of the 
continuity principles in estuaries has appeared in the literature. 
This has come about through attempts to simplify the problem 
under study by considering the estuary to be sectionally homogen
eous, thereby reducing the problem to one spatial dimension. It 
seems appropriate to develop rigorously the proper forms of 
equations that express mass and salt continuity for estuaries under 
the various assumptions regarding spatial variations of the per
tinent parameters. 

The Basic Continuity Equations. Consider a right-handed co
ordinate system xi, with the x 1-axis directed longitudinally down 
the estuary, the x 2-axis directed laterally across the estuary, and 
the x 3-axis directed vertically downward. The principle of conser
vation of mass may be expressed as 

(1) 

1 Contribution No. 44 from the Chesapeake Bay Institute. This work was sup
ported by the Office of Naval Research, the State of Maryland (Department of 
Research and Education), and the Commonwealth of Virginia (Virginia. Fisheries 
Laboratory). 

(412) 
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where e is the density and v, the velocity at a given point x, at a 
given instant of time t. If water is considered virtually incompressible, 
this relationship reduces to 

ov,Jax, = 0. (2) 

The principle of conservation of salt is expressed by 

os/at = _ _!_{sv,} +<5 f)2s' 
ox, ox,2 (3) 

where s is the salt concentration per unit volume at a point x, and 
at a time t. The molecular diffusion of salt, <5 (o2s/oxt2), is normally 
considered negligible in the natural environment, and it is so con
sidered here. 

The instantaneous velocity, v,, may be taken as equal to the sum 
of a time mean velocity, v,, and of a velocity deviation v/. Like
wise, the salt concentration, s, is expressed as the sum of a time 
mean value s and of a deviation term s'. Thus 

(a) v, = v, +v/ 
(b) s = s +s'. 

(4) 

The period over which the mean is taken may be relatively short, 
so that v, and s are in themselves functions of time. 

Substituting from (4) into (2) and (3) and taking the time mean 
of these latter two equations over a period equal to or longer than 
the period used in defining v, and s, 

(5) 

and 
!l-/ a (v,s) a , , us at=----- <v, 8 >. ox, ax, 

(6) 

Here the bracket < > represents a time mean, as does the super
script bar. The term (v,s) represents an advective flux of salt while 
< v/ s'> is a nonadvective or turbulent flux of salt. By analogy to 
the molecular process, it is common in oceanography to replace the 
eddy flux term < vi's' > by the product of a diffusion coefficient 
and the spatial derivative of the mean salt concentration. In the 
most general case, oceans, estuaries, and other natural water bodies 
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must be considered as anisotropic. Hence, the nonadvective flux 
of salt is expressed by 

<v/ s' > = -K,/Jsjax1• 
where K,1 is the eddy diffusivity, and (6) becomes 

a-8/ a (v,s) a {K as} at=---+- ,1-. ax, ax, axj 

(7) 

(8) 

It is generally assumed that eddy diffusion is only effective in 
the direction normal to the concentration gradient. Hence the last 
term in (8) is too general. The required restriction on the diffusion 
term can be imposed, while retaining the convenient tensor notation, 
if it is required that 

and K ,1 = O for i :;,= j 
K ,1 > 0 for i = j. 

By use of (5), eq. (8) can also be written 

as/at= -v,as/ax, -a~1 {K,1as/ax1}· 

(9) 

(10) 

In the remainder of the paper the superscript bar, indicating a 
time average, will be omitted. Hence the symbols v, and s will rep
resent time averages of velocity and salt concentration over an 
unspecified period of time. 

The General Case of Three S'[JO,tial Dimensions. Eqs. (5) and (10), 
written out for the general three-dimensional estuary, are 

av1/ax1 +av2JaXi +avs/axs = 0 ; (11) 

as/at= -Vi ~-V2!__!_-V3!__!_ +_!__{Kl!_.!._} a~ aXi a~ a~ a~ 

+ _!__ {K2 !_.!._} +_!__{Ks!_.!._} ax2 ax2 a~ ax3 ' 

(12) 

where, for convenience of notation, the double subscripts on Kn, 
K22 and K33 have been contracted to K1, K 2 and K

3
• 

Eq. (12) applies not only to salt concentration but to the time 
rate of change in concentration of any conservative dissolved 
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material, such as industrial pollution. It can also be applied to 
colloidal suspensions and those small particle suspensions with 
settling velocities that are negligible compared to advection and 
diffusion processes. In the case of nonconservative contaminants, 
such as nuclear materials or domestic wastes, additional terms rep
resenting decay rates would have to be added to (12). 

The present possibilities of solving these general equations are 
not promising, particularly with the inclusion of complex boundary 
conditions of a real estuary. Numerical solution, using high speed 
electronic computers, must await the development of machines with 
much larger memory capacity than is now available. Also, some 
independent means of determining the diffusion coefficients is re
quired. When computing machines of sufficient storage capacity 
become available, the general three-dimensional equation may be
come useful in predicting the probable distribution in space and 
time of a contaminant released into a given estuary. Such possi
bilities are being studied, but the procedures to be followed are 
beyond the scope of the present paper. 

Most of the published work to date has dealt with the one- and 
two-dimensional approximations to the continuity equations, and it 
is in these approximations that misuse of basic concepts has resulted. 

The Gase of Two Spatial Dimensions. Some estuaries are nearly 
homogeneous vertically, and spatial variations in velocity and salt 
concentration are limited to the two horizontal co-ordinates. Other 
estuaries exhibit little lateral variation, hence significant gradients 
in the fields of velocity and salt concentration exist only along the 
longitudinal and vertical axes. In both of these situations the per
tinent equations may be reduced to two dimensions. 

Consider the vertically homogeneous estuary first. The condition 
of no vertical variation in velocity and salinity will be delayed until 
certain operations on basic equations have been completed in order 
to show clearly the significance of this assumption. 

The origin of the co-ordinate system is assumed to be so located 
that the plane x3 = 0 coincides with mean tide level. The x3 co
ordinate of the surface at any time t is designated by 'Y/ (x1, x 2, t). 
The x3 co-ordinate of the bottom is taken as h(x1, x 2). Integration 
of (5) from surface to bottom gives 

(13) 
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Applying Leibnitz' rule, the first two terms of (13) become 

and 
~

11ov a ~II oh OTJ 
-

1 dx3 = - v1dx3 - Vi (h)-;-- + v (TJ)-;--
11ox1 OX1 1/ vX1 vXi 

[17 

(14) 

(15) 

However, the condition that there can be no flow through the 
boundaries gives 

and 
OTJ OTJ OTJ 

(b) Va (TJ) = Vi{TJ) OX1 +v2 (TJ) OXz + ot. 

(16) 

Substituting (14), (15) and (16) into (13) gives, for the equation 
of continuity, 

a ~II a ~II OTJ - V1dX3+- V2dX3--= 0. 
ax1 11 ax2 11 at 

(17) 

Now, integrating (8) from surface to bottom and proceeding in 
the same manner as above, we have for the salt balance 

\
11
sdx8 = --l-\ 11

visdx3 -_!__(
11
v2sdx8 +_!__\

11{K1!._!__}dx3 vtJ11 vX1 J71 OX2 J71 OX1 J71 OX1 

+_!__ \
11{K 2 ~}dx 3 • 

OX2 J1/ OX2 

(18) 

The concept of vertical homogeneity implies that Vi, v2, s, Ki 
and K 2 are not functions of x 3• Hence ( 17) and ( 18) become 

(19) 

and 

(20) 

where h = h - T/ • 



1958] Pritchard: Mass and Salt Continuity Equations 417 

Combining (19) and (20) gives 

(21) 

Equations similar to (20) and (21) have been applied to estuaries 
which are not vertically homogeneous by using the mean values of 
v1, v2, s, K 1 and K 2 over the vertical. Eq. (20) cannot be obtained 
from (18) simply by taking mean values of various individual param
eters over the vertical, since the integrals on the right side of (18) 
involve products of the parameters. An equation similar to (20) 
could be used to describe the distribution in time and space of the 
mean salt content taken over the vertical, for an estuary which 
exhibits a vertical variation in salt content. However, the coefficients 
K 1 and K 2 would not represent the mean value of the diffusion 
coefficients over the vertical, and, in fact, no physical meaning can 
be attached to these coefficients when the equation is employed in 
such a case. The terms K 1 and K 2 merely become those functions 
which, when included in (20), allow that equation to describe prop
erly the distribution in time and space of the mean salt content. 

For the case of a laterally homogeneous estuary, (5) and (8) are 
integrated from the left-hand boundary, a(x1, x 8), to the right
hand boundary, b (x1, x 3). By proper application of Leibnitz' rule 
and by introducing the kinematic boundary condition, these equa
tions become 

(22) 

and 

(23) 

The condition of lateral homogeneity reduces these equations to 

o(wv1) + o(wva) = 0 
OX1 OX3 

(24) 

and 



418 Journal of Marine Re,search [17 

a (ws) = - a (WV18) - o(WV38} + _!_ { K1 w !.!_} + _!_ { K3W !.!_ }, (25) 
at ax1 ox3 ax1 ax1 ox3 ox3 

where w = b-a. 
Combining (24) and (25) gives 

w~ = -wv1 !.!_ - wv 3 !.!_ + _!_ { K 1 w !.!_} + _!_ { K 3w !.!_ }· (26) at ax1 ox3 ax1 ax1 oxa oxs 
Again note that this salt balance equation for a laterally homo

geneous estuary cannot be applied to the mean salt concentration 
across an estuary which is not laterally homogeneous without the 
loss of physical significance to functions K 1 and K 3• 

The Gase of One S'f)(ltial Dimension. Because of the complexity 
of the general three-dimensional equations, and even of the more 
restricted two-dimensional equations given above, many investiga
tors have attempted to reduce kinematic and dynamic problems 
in estuaries to a single spatial dimension. It is in these treatments 
that the most frequent misuse of continuity concepts has occurred. 

The appropriate equations for a one-dimensional estuary are ob
tained by integrating the equation of continuity, in the form given 
in (5), and the salt balance equation, as expressed by (8), over a 
cross-sectional surface area a1• This planar surface is taken perpen
dicular to the xcaxis and is bounded by the left and right sides of 
the estuary, a(xi, x 3) and b(xi, x 3), by the surface 71(x1, x 2, t) , and 
by the bottom h(xi, x 2). For eq. (5) the integration gives 

(27) 

The two-dimensional analog of Leibnitz' rule for differentiation 
under the integral sign2, when applied to the first term in (27), gives 

2 I have been unable to locate, in any standard reference text available to me, 
a statement of Leibnitz' rule for multiple integration when the limits of integration 
are functions of the variable of differentiation. I have shown to my own satisfaction 
that the following form applies to the case under consideration: Given is/ (x1, x1, x1, t ), 
a continuous function within the bounded space of interest. Designate a (x1, t) as 
a planar surface perpendicular to the x1-axis and varying with both x

1 
and t. The 

function F (x1, t) is the integral of / (x1, x1, x3 , t) over the area u (x
1

, t). 
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The last two terms in (27) give 

n•av2 dx2dX3 = rf>v2dX3 
JJax2 

and 

419 

(28) 

(29) 

(30) 

The time rate of change of the surface area can be expressed by 

aal A', A', aal,1-', 
- = lf'V2dX3 + lf'V3dX2 - - lf'V1 dl, (31) 
at axl 

hence (27) becomes 

(32) 

Proceeding in the same manner with (8), integration of the salt 
balance equation over the surface area a 1 reduces finally to 

(33) 

Now, if the estuary is sectionally homogeneous, so that Vi; s, 
K 1 and asJax1 are not functions of x 2 and x3, then (32) becomes 

(34) 

and (33) becomes 

The partial differential of F with respect to x1 is given by 

iJF = \\ fda = \\ !.!._da+~ !fiv1dl, 
OX1 OX1 JJ JJ OX1 OX1 

a a 

where fPdl represents the closed line integral around the boundary of the area, 
dl being taken along the boundary line. 
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(35) 

Combining (34) with (35) gives 

(36) 

Consider a cross-section located in the river above the head of an 
estuary, where the rise and fall of the tide ceases. The integral of 
velocity over the cross-sectional area at this location is simply 
equal to the volume rate of flow of fresh water (instantaneous river 
flow) designated as Q1. If (32) is integrated from this upstream 
cross-section to any position x 1 within the estuary, then 

(37) 
a, 

where V represents the volume of the estuary contained between 
position x 1 and the head of the tide. Then oV/ot represents the rate 
of change of storage of water above the cross-section at x 1• 

For a sectionally homogeneous estuary, (37) becomes 

(38) 

In most estuaries the time rate of change in storage between the 
head of tide and any given cross-section is simply a harmonic term 
of tidal period, hence the integral of (38) over a tidal cycle of period 
T is given by 

(39) 

where R represents the freshwater inflow per tidal cycle. In some 
estuaries the storage term may have a large variation over much 
longer time periods than the tidal period (see, for instance, Todd and 
Lau, 1956). In such cases an added term representing this non
tidal variation in storage must be included in (39). 

The equations developed here are based on the concepts of con
tinuity of mass (which, for the nearly incompressible fluid , water, 
can be expressed in terms of volume continuity) and of continuity 
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of salt. Several investigators have developed and utilized inapplic
able relationships through an erroneous assumption that the con
tinuity concepts apply to fresh water on the one hand and to salt 
water on the other. Thus Ketchum (1950), under the same assump
tions regarding upstream storage as those used here in arriving at 
(39), defined the nontidal drift through any cross-section of the 
estuary (designated as NTD) by the relationship 

R 
NTD= - Fxa/ 

with a1 as the mean cross-sectional area, R as given above in (39), 
and F as the freshwater fraction. This latter term is given by 

(41) 

where sb is the salt concentration at the seaward end of the estuary 
and s the salt concentration at the section in question. 

Now, the non-tidal drift is simply the mean velocity, v1, taken 
over the tidal cycle. Comparison of (39) with (40) shows that the 
latter equation is inconsistent with properly applied continuity 
concepts in an estuary. 

Todd and Lau (1956), using essentially the same arguments as 
Ketchum (1950), developed the following two relationships (in 
our notation): 

(42) 
and 

[Q,dt = [Fav1dt = R. (43) 

Comparison of (38) and (39) with (42) and (43) shows that these 
latter equations cannot be correct, even when the time rate of 
change of storage, a V /8 t, is zero. 

This particular erroneous application of continuity principles has 
been discussed more fully by Pritchard (1957), where it was shown 
that, for the simple case of constant river flow and constant tidal 
range, the correct application of the continuity principles showed 
the equations of Todd and Lau to be erroneous. Eqs. (38) and (39), 
arrived at without these restrictive assumptions, verify the previous 
conclusions for the more general case. 
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Return now to eq. (39). Note that both the cross-sectional area 
a

1 
and velocity v1 are functions of time. Assume that both a1 and 

v
1 

can be expressed as the sum of a mean value over the tidal period 
plus a harmonic deviation term of tidal period; that is: 

(44) 
and 

(45) 

where au represents the change in cross-sectional area due to the 
rise and fall of the tide and where U is the purely oscillatory tidal 
velocity. By substituting from (44) and (45), eq. (39) becomes 

(46) 

where < au U > represents the time mean over the tidal period and 
R' = RJT represents the mean river flow per unit time. Eq. (46) 
shows that the relationship between volume rate of inflow of fresh 
water, R', and nontidal drift velocity, i\, depends on the amplitudes 
and phase relationships of the harmonic variation in cross-sectional 
area and of the oscillatory tidal current. The term < au U > can be 
quite large, exceeding the river flow in some cases by nearly an 
order of magnitude. 

If the tidal wave in an estuary is a pure standing wave, such that 
slack water occurs at high and low tide, then < au U > = 0. How
ever, if the wave is a pure progressive one, such that the maximum 
tidal velocity occurs at high and low water, then 

(47) 

where a0 is the amplitude of the harmonic variation in cross-sectional 
area and U O the amplitude of the variation in tidal velocity. In 
this case, then, (46) becomes 

(48) 

The observed nontidal drift in sectionally homogeneous estua
ries frequently exceeds the quotient of river flow over mean cross
sectional area. Since the fraction of fresh water F in the expression 
for nontidal drift , as developed by Ketchum ~nd' given here as eq. 
(40), is generally less than unity, these observations tend to support 
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the conclusions of Ketchum. Eq. (48) shows that the observed drifts 
are consistent with the correct application of continuity principles. 
Consider, for example, some typical values for the parameters in 
(48). Let U0 = l m/sec, a1 = 104m2, a0 = 0.2a1, and R' = 102 m3/sec. 
Then 

½a0 U0 = 10 
R' ' 

hence 
<11V1 = llR'. 

In most estuaries, the phase relationship between tidal current 
and tide height is intermediate between that for a pure progressive 
wave and that for a pure standing wave. The resulting form of (46) 
would be 

(49) 

where 0 < n < 1/ 2• Thus, in general, the nontidal drift velocity, i\, 
will exceed the quotient of river flow over mean sectional area. 
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