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THE DYNAMICS OF LARGE HORIZONTAL EDDIES 
(AXES VERTICAL) IN THE OCEAN OFF 

SOUTHERN CALIFORNIA 1 

BY 
GEORGE F. McEWEN2 

Scripps lnstitutian of Oceanography 
University of California 

La Jolla, California 

INTRODUCTION 

A striking feature shown on charts of horizontal circulation of the 
ocean in the southern California region, Lat. 32° to 34.5° N., is a large 
counterclockwise eddy between a northward inshore current and a 
southward offshore current. Charts arranged in time order from 
spring, at intervals of about two weeks, show a decrease in veloc~ty 
and an increase in size of the eddy. This suggests that these eddies 
may be successive stages in the decay of an initial state of maximum 
intensity and relatively small extent. In order to simplify the 
dynamical problem thus presented, equivalent circular eddies are 
derived by averaging the velocities of the actual oval-shaped ones. 

Each of three series of such circular eddies conformed approximately 
to the principle of the conservation of angular momentum, and the 
kinetic energy was found to decrease according to a formula of the 
dissipation of energy caused by lateral eddy viscosity. Values of the 
coefficient of eddy viscosity computed by means of this formula 
ranged from 3 x 104 to 6 x 106 c. g. s. 

A combination of the two general hydrodynamic differential equa­
tions of horizontal motion in the sea, involving the deflecting force 
due to the earth's rotation as well as pressure gradient and lateral 
turb~_ence, led to _a single diff erential equation of the diffusion of 
vort1c1ty . . ~ -solut10~. of this equation was found corresponding to 
constant m1tial vorticity over a circular area of appropriate radius 
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and zero vorticity outside of this area. Application of Stokes 
theorem (Lamb, 1945: 31-36) relating circulation to vorticity provides 
a means of computing the velocity corresponding to any time and 
distance from the center of the eddy. Substituting in this expression 
for velocity the value of the coefficient of eddy viscosity (found from 
the rate of energy dissipation) and a value of the initial radius (esti­
mated from an inspection of the charts) yields the theoretical velocity 
except for a constant factor. This factor, which is also the maximum 
initial velocity, was determined by comparison of the values of the 
foregoing expression with the velocities at the earliest date of observa­
tions in each series. Thus the velocity-distance relation can be 
predicted for any later time. The general agreement of the mathe­
matical model with observations materially reinforces the evidence in 
support of the thesis suggested by an inspection of current charts 
arranged according to time. 

THE HORIZONTAL CIRCULATION OFF SOUTHERN 
CALIFORNIA INFERRED FROM DYNAMIC 

HEIGHT ANOMALIES ACCORDING TO 
THE BJERKNES METHOD 

The charts of horizontal circulation (Figs. 1 to 10) off southern 
California show certain striking features typical of this region. They 
are a selection based upon systematic seasonal surveys (Sverdrup and 
Staff, 1938: charts on pp. 14, 16, 17, 19, 21; 1939: charts on pp. 68, 69, 
71-75; 1940: MS. charts; 1941: charts on pp. 250-264) made in col­
laboration with the California State Fish and Game Commission. At­
tention is called especially to the large counterclockwise eddies, centered 
at about Lat. 33.5° N. and Long. 119.5° W., which form a striking part 
of the general circulation pattern of prevailing northward inshore 
currents and southward offshore currents. Although recognized by 
various oceanographers, these eddies have not been the subject of 
detailed investigation. An inspection of Figs. 1 to 5, showing the 
circulation at the 50-meter level during 1940, suggests a succession of 
stages of an eddy of maximum initi al intensity and relatively small 
extent. This percept is also suggested by Figs. 6 to 10 showing 
the surface circulation during 1941, although the period of observa­
tion is about two months later and although the first eddy has a larger 
area than that of 1940. In order to simplify the problem and to 
emphasize the essential characteristics, equivalent circular eddies 
were obtained by averaging the velocity between each pair of stream­
lines and averaging the distances to the center of the actual oval­
shaped eddy. Figs. 11 to 14 show such equivalent circular eddies at 
the surface for 1940, and Figs. 15 to 18, for the same year, show equiva-
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Figures 1-3. Dynamic Height Anomalies (current boundaries) 50 over 500 Dec!bara, 1940 
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lent circular eddies at the 50-meter level. The average velocity 
between each pair of circles is inversely proportional to the distance 
between them, according to the Bjerknes theory. The simplest 
curves showing the relation of velocity to distance from the center, 
corresponding to each circular eddy, are shown by the heavy lines in 

Figures 4, 5. Dynamic Height Anomalies (current boundaries) 50 over 500 Decibare, l!MO . 

the same figures. In general, the curves show that the velocity 
increases from zero at the center of the eddy to a maximum, and then 
decreases. The position of maximum velocity of the surface eddy, at 
the earliest date, is about 12 kilometers from the center and shifts 
farther from the center at later stages. The eddy at the 50-meter 
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Figures 6---8. Dynamic Height Anomalies (current boundaries) 0 over 500 Decibars, 1941. 
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level has the same general characteristics, but the position of maxi­
mum velocity shifts from 10 to nearly 30 kilometers at the last stage. 

THE CONSERVATION OF ANGULAR MOMENTUM, AND 
RATE OF ENERGY DISSIPATION IN THE 

EQUIVALENT CIRCULAR EDDIES 
The empirical curves drawn to show the relation of velocity to 

distance from the center of an eddy at its successive stages are only 

·~· £.WSCRIPPS 
CRl.113;( 2? 

l,/l'f21 · 21, I .... 
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Figures 9, 10. Dynamic Height Anomalies (current boundaries) 0 over 500 Declbara, 1941. 

Jair approximations to what might result from more detailed observa­
tions. Accordingly, only crude estimates of the quantities required 
can be obtained from these curves. Yet these curves must serve as a 
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Figures 13, 14. Circular models of eddies Indicated on charts of Dynamic Height Anomalies, 
O over 500 Declbars, and relation of velocity to distance from center, 1940. 
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Figures 17, 18. Circular models of eddies Indicated on charts of Dynamic Height Anom­
alies, 50 over 500 Declbars, and relation of velocity to distance from center, 1940. 
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basis for the first approach to the dynamics of the eddies, and by 
making several estimates of each quantity the errors may be reduced. 

Since both the velocity and the velocity gradient decrease as the 
distance, r, from the center increases beyond that corresponding to 
the maximum velocity, external frictional forces may be neglected, 
if a sufficiently large portion of the eddy is used as a basis for com­
putations. 

Assuming only internal forces, the principle of the conservation of 
angular momentum applies to the eddy, considered as a mechanical 
system. Therefore, assuming unit density of the water, the angular 
momentum of unit thickness of the eddy, 

r' 

A. M. = 21r J r2qdr, 
0 

(1) 

should be constant at successive times, where q equals the velocity at 
distance r. A reasonable length of the maximum radius, r', of the 
eddies was determined by inspection of the charts and graphs to be 50 
kilometers. If the same length is used for the successive stages of 
each series, a rough approximation will serve the purpose. Values of 
the angular momentum in c. g. s. units, computed by numerical 
integration of r2q read from the empirical curves, are compiled in 
Table I. 

TABLE I. ANGULAR MOMENTUM, IN c. G, s. UNITS, OF HORIZONTAL EDDIES 

AT THE SURFACE AND AT 50-METEB LEVELS 

1940 0/500 50/500 Sum 
A 3.16 X lQ21 

14 days 
1.81 X 1021 4.97 X 1021 

B 2.46 X 1021 2.14 X 1021 4.60 X 1()21 
34 days 

C 2.29 X 1021 1.81 X 1021 4.10 X 1()21 
18 days 

D 2. 76 X 1021 2.24 X 1021 5.0Q X 1021 
1941 0/500 

A 4.85 X 1021 
48 days 

B 4.81 X 1021 
62 days 

C 2.47 X 1021 

Considering the rather crude a . . 
q against r, the tabulated r uhprox1mation of_ the empirical graph of 
conservation of angular m~~e:t~:~e well with the principle of the 
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Values of the kinetic energy, inc. g. s. units, computed for the same 
eddies by means of the formula 

K. E . = 2~ j r (;) dr , (2) 

are compiled in Table IL 

TABLE II. KINETIC ENERGY, IN C. G. s. UNITS, OF HORIZONTAL EDDIES 
AT THE SURFACE AND AT 50-METER LEVELS 

1940 0/500 50/500 Sum 
A 8.7 X lQ16 4.9 X 1016 13.6 X 1015 

B 3.5 X 1016 4.5 X lQ16 8.0 X 1015 

C 3.7 X 1016 1.8 X 1015 5.5 X 1016 

D 5.5 X lQ16 3.5 X lQ16 9.0 X 1015 

1941 0/500 
A 7.63 X 1015 

B 6.57 X 1016 

C 1.62 X 1015 

Although the results are somewhat irregular, as was to be expected, 
there is a general decrease of the kinetic energy in the successive 

stages of each eddy, and estimates 
of the average rate of energy dis­
sipation corresponding to various 
time intervals can easily be com­
puted. The rates of loss of energy 

+ can also be computed from formu­
D- lae involving velocity gradients 
E and the coefficient of eddy vis­

cosity a2• If the motion is along 
parallel straight lines, the rate of 
energy dissipation per unit volume 
due to friction (Dryden, Mur­
naghan and Bateman, 1932: 157; 
Kalinske, 1939: 1394; 1940: 1236) 

d 2 can easily be shown to have the 
value a2(d;) , where u equals the velocity in a direction perpendicular 

to y. The corresponding expression for motion in concentric circles, 
assuming circular symmetry of the velocity field, may be derived as 
follows: Referring to the diagram, where w equals the angular velocity 
in radians per second, 
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(w + Aw) (r + Ar) = wr + wAr + rAw + [(Aw) (Ar)] = q,+tJ.r, 

WT= q,, 
and q,+1:,.r - q, = wAr + rAw + [(Aw) (Ar)] . 

Therefore, 
dq dw dw dq 
- = w + r - and r - = - - w 
dr dr dr dr 

dq q 

dr r 
(3) 

Since rAw equals that part of the velocity in the larger circle relative to 
that in the smaller circle, due to the change in angular velocity with 
reference to r, the frictional stress due to the relative velocity, 

(r ::) Ar = rAw , 

JS 

a
2 
(r~) Ar 

Ar 

Therefore, the power loss per unit horizontal surface area is 

[
a2 (r dw) Ar ] [ dw ] dr r-Ar . 

dr 
Ar 

Dividing this product by Ar gives the rate of dissipation of energy per 
unit volume, which reduces to 

a2 (r dw)2 = a2 (dq - .!!_)2 
dr dr r 

Therefore, the rate of energy dissipation of an eddy of unit thickness is 
r' 

f (dq q)2 
21ra2 r dr - -:; dr ' 

0 

(4) 

w~ch can be fou~d by numerical integration of the integrand, whose 
;~n:~ can be esti~ated from the empirical graphs of q against r. 

Y, by equatmg the two expressions for th t f energy loss, e average ra es o 
, 

T 

21ra2f 
0 

(
dq q )2 ] 

r dr - -:; dr to . '1 
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/ ,(~) dr]. / ,(~) dr] 
= 211" I 'o 1 (5) 

(t1 - to) 

we obtain a formula for computing the coefficient of eddy viscosity, 

(/ ,(;)dr 1-/ ,(;) d,]J 
a2 = --- - ----- --- ---- (6) 

where the integral in the denominator should be averaged over the 
interval t1 to t0• A sufficiently close approximation for the present 
purpose is the arithmetic mean of the values of the integral correspond­
ing to the times t0 and t1. The values of a2 thus found from various 
combinations of kinetic energy values in Table II are presented in 
Table III. 

TABLE III. VARIOUS ESTIMATES OF THE COEFFICIENT OF 

EDDY VIscosITY a2 IN c . o. s. UNITS 

1940 0/500 50/500 
A,B 4.9 X 106 0.3 X 106 
A,C 1.8 X 106 1.3 X 106 
A,D 0.8 X 106 0.4 X 106 
A,E 1.9 X 106 1.3 X 106 

1941 0/500 
A, B 0.7 x 106 
A, C 2.5 x 10• 
B, C 5.7 x 106 

The range is rather large for each of the three series due to the crude 
empirical relation between q and r. Adopted median values of a2 for 
later use are listed in Table IV . 

TABLE IV. SELECTED MEDIAN VALUES OF THE COEFFICIENT OF EDDY 

VISCOSITY FOR EACH OF THREE SERIES OF EDDIES 

Year 
1940 
1940 
1941 

Depths 

0/500 
50/ 500 
0/500 

a2 

1.5 X 106 

1.0 X 106 

3.0 X 106 
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PRELIMINARY STUDY OF LARGE EDDIES BASED ON 
VORTEX-FILAMENT THEORY 

The foregoing evidence presented in support of the thesis appears to 
justify an attempt to predict from the observed velocity distribution 
at the earliest date in each s~ries, the relation of velocity to the dis­
tance from the center at the successive times of later surveys. This 
hydrodynamical problem will now be considered in the light of the 
resemblance of the observed velocity distribution in an eddy to the 
velocity distribution around a vortex-filament. For a detailed treat­
ment of the vortex-filament, see Lamb (1945: 202-249), Prandtl 
(1935: 68), and Dryden, Murnaghan and Batemen (1932: 212-218). 
Vortex lines have the direction of the instantaneous axis of rotation of 
the fluid. A vortex-tube is formed by the collection of vortex lines per­
pendicular to a small closed curve, and the fluid within such a tube 
constitutes a vortex-filament. The circulation, I', of a closed curve is 
defined as the line integral of the tangential component of the velocity 
around the curve. Twice the angular velocity of the fluid elements is 
called the vorticity, and the product of the vorticity by the cross sec­
tion of a vortex-filament equals the circulation which is constant for 
all cross sections of the tube. In this paper the vorticity will be de­
noted by r, corresponding to the vertical direction of the axis. 

There is an instructive analogy between the dissolution of a vortex­
filament generated in a viscous fluid and the conduction of heat from 
a small heated portion of a flat plate. The constant circulation of 
the vortex corresponds to a constant quantity of heat initially con­
centrated ~t a point. ~his_ quantity of heat will spread outward 
from the pomt by conduct10n m accordance with the following function, 

K 
S = t exp ( - r2/4vt) , (7) 

which is a we!l known solution of the following differential equation of 
heat co_nduct10n, assuming circular symmetry about th · t f _ 
centrat10n: e pom o con 

= v (a2s + _!_ as) . 
at ar2 r ar ' (8) 

S = amount of beat per unit area. 
v = coefficient of heat conduction'· 
r = distance from center· ' 

= time· · ' 
' K = a constant. 
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The total amount of heat, within a circle of radius r, equals 
r 

211' J rSdr = 4v11'K [1 - exp ( - r2/4vt)], (9) 
0 

which approaches the constant 4v11'K as r-+ co, for all values of t. 
The same limit is approached as t-+ 0, for all values of r. 

Leaving the problem of heat conduction, consider the analogous 
one of vorticity, 

r r 

r = 211' J K/t exp (- r2/4a2t) rdr = 211' J trdr 
0 0 

= 4a211'K [1 - exp (- r2/4a2t)], (10) 

where a2 equals the coefficient of viscosity. 

As r-+ co, r-+ the constant 4a211'K = r 1, the circulation of an 
infinitely large circle. Therefore, 

r = r1 [1 - exp (- r2/4a2t)]. (11) 

The velocity, q, equals the circulation divided by the circumference: 

r1 
q = - [1 - exp ( - r2/4a2t)] . (12) 

2,rr 
As (r2/4a2t) -+ co, q-+ q1 = 2r

1 equals the usual circulatory motion 
'll'T 

with a potential. For small radial distances, 

r1r 
q = - I ¼a2t - ½(r/4a2t)2 + ... I . 

211' 
(13) 

Since r = (K/t) exp (- r2/4a2t) from the heat conduction analogy, the 
vorticity equals 

(14) 

Therefore, on the axis r1 
r = r 1 = 4a211't , (15) 

and for very small radii, the velocity equals 
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In general~' r,,, [ 1 _ exp ( _ ::::)] 

q = - [1 - exp (- r2/4a2t)] = - ------- . (17) 
2rr 2 8 

Accordingly for t > 0, the velocity around a vortex-filament is pro­
portional to the distance from the center for small values of r. As r 
increases, the velocity is inversely proportional tor. Thus the velocity 
increases from zero to a maximum at some small value of r, and then 
decreases, approaching zero, as r increases indefinitely. However, as 
t - O, r1 - co, and the position of maximum velocity approaches the 
axis. Thus, there is a general qualitative agreement between the 
velocity distribution around the vortex-filament and that observed in 
the eddies in the ocean. However, the initial position of the maximum 
velocity on the axis and the concentration of a very great vorticity 
in a very small area together constitute insuperable objections to the 
use of a vortex-filament as a model for detailed quantitative applica­
tion to a large eddy in the sea. Yet, the general results already 
found suggest that it would be worth while to attempt the application 
of the fundamental concept of the vortex-filament to the eddy problem 
in such a way as to avoid the foregoing objections. 

VORTICITY DISTRIBUTION OVER A CIRCULAR AREA AS 
A SATISFACTORY MODEL OF A LARGE EDDY 

IN THE OCEAN 

In order to take advantage of the fundamental physical properties 
of the vortex-filament, and to avoid the objections referred to in the 
foregoing section, assume an initial distribution of vorticity over a 
circ~ar area of appropriate radius, r1. Moreover, in this attempt to 
deVIse a model of an eddy in the ocean, it will be necessary to place 
the whole theory on a sound physical basis, defined by the following 
accepted general hydrodynamical equations of motion in the sea 
(Sverdrup, Johnson and Fleming, 1942: 433; Sverdrup, 1942: 93, 96). 
In a left-hand rectangular coordinate system with positive z-axis the 
general hydrodynamical equations of motion in the ocean for the 
northern hemisphere are: 

iJu iJu iJu iJu . ap 
"t + u-;- + v- + w- = 20 (sm <I>) v - a-+ aR 
V uX ay az ax : ' (19) 

iJv av av av 
-+u-+v-+w- = 
iJt ax ay az - 20 (sin</>) u - a ap + aR 

ay ~' 
(20) 



1948) McEwen: Dynamics of Large Horizontal Eddies 205 

aw aw aw aw ap - + u - + v - + w - = - 20 (sin q,) VB + g - a - + aR,. (21) at ax ay az az 
u, v, w, the velocity components along the coordinate axes; 
vs the horizontal velocity toward the east; 
n, angular velocity of earth's rotation = .729 x 10-3 ; 

q,, geographic latitude; 
a, specific volume of the water; 
P, pressure; 
R.,, R11 , R., components of the frictional force per unit volume; 
g, acceleration of gravity. 

For the southern hemisphere, change the signs of the first terms on the 
right-hand side of the first two equations. 

Consider only horizontal motion and assume small variations of 
latitude. Let 2 Q sin <f, = a constant average value, X, and replace 
the symbols R, denoting fluid friction, by a2v'2u, and a2v'2v, thus ob­
taining the Navier-Stokes equations of motion in the sea (Sverdrup, 
Johnson and Fleming, 1942: 470): 

au au au ap (a2u a2u) - + u - + v - = - a - + Xv + a2 - + - , at ax ay ax ax2 ay2 
(22) 

- + u - + v - = - a - - Xu+ a2 - + - . av av av ap (a2v a2v ) 
at ax ay ay ax2 ay2 

(23) 

(a2 = kinematic coefficient of eddy viscosity, assumed to be constant.) 
Take the negative partial derivative of equation (22) with respect to 
y and the positive partial derivative of equation (23) with respect to 
x, and add the results: 

a (av au) a (av au) a (av au) au (av au) 
at ax - ay + u ax ax - ay + ay ax - ay + ax ax - ay 

av (av au) [ a (av au) a (av au) ] (24) 
+ ax ax - ay = a

2 ax2 ax - ay + ay2 ax - ay · 

Substituter for the vorticity, (av - au) = curl of the velocity (Lamb, ax ay 
1945: 202), and assume the equation of continuity, 

au av -+- =0, ax ay 
thus obtaining 

ar = a2 (a2r + a2r ) _ (u ar + V ar) . 
at ax2 ay2 ax ay 

(25) 
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Equations for transforming from rectangular to polar coordinates, 
assuming circular symmetry or a/a8 and a2/afP = 0 (Gibson, 1931: 
113-115; Woods, 1926: 72-73), are 

af af af af . a21 - a21 2 af sin2 8 
- = - COS 8 - = - SID 8 1 - - - COS 8 + , 
ax ar I ay ar ax2 ar2 ar r 

a21 a21 . af cos2 8 a2f _ sin 28 (a2/ _ af) 
-=-sm28+---, --- 2 • ay2 ar2 ar r axay 2 ar r ar 

For circular symmetry, 

(
u ar +var) 

ax ay 
reduces to 

ar ar ar . . u - cos 8 + v - sin 8 = - q - (sm 8 eos 8 - cos 8 sm 8) = 0 , 
ar ar ar 

since u = - q sin 8 and v = q cos 8 • 
Therefore, the final equation is 

ar = a2 (a2r + a2r ) . (26) 
at ax2 ay2 

For circular symmetry 

a2r a2r ( x2 ) ar y2 
ax2 = ar2 x2 + y2 + ar -(x_2_+_y-2)_v_x2---+=y---2=-

a2r a2r ( y2 ) ar x2 
ay2 = ar2 x2 + y2 + ar -(x_2_+_y-2)_v_x_2_+_y_2 

Substituting these expressions and simplifying gives the equation of 
diffusion of vorticity in the sea, 

ar = a2 (a
2
r + ar) , 

at ar2 T ar 
(27) 

which is the same form as the equation of heat conduction (8). Thus 
the analogy of vorticity diffusion to heat conduction used in the 
section on the vortex-filament is established for motion in the sea. 

If the coefficient of eddy viscosity is not restricted to the constant 
value a2, but is assumed to beµ, a function of x and y, a method similar 
to the foregoing yields the equation 

ar (a
2
r 1 ar) (a2

µ 1 aµ) aµ ar 
- =µ -+-- +r -+-- +2-- c2s) at ar2 

T ar ar2 T ar ar ar 1 



1948] McEwen: Dynamics of Large Horizontal Eddies 207 

where µ is a function of r. 
Having derived equation (27) of the diffusion of vorticity in the sea, 

consider initial conditions adapted to a large eddy: 

t = ti , r < Ti , t = 0 , 

S = 0 , r > Ti , t = 0 1 

where si is constant and r1 is a constant radius to be determined. 
Then the initial velocity distribution is given by equations 

r 

s1 J 21rrdr 

q = 
0 

27rT = t~r = ( r;l ) 0' 0 = r/r1 < 1 ' (29) 

q=----= 
27rT 

(30) 

In such a model the initial velocity would be proportional to r for 

r < ri and inversely tor for r > r1, with a maximum value s~i at the 
distance r1, as shown in the following diagram: 

q 
... 
' 

-- ... _ 

r 

--- --- ---

The graphs (Figs. 11 and 16), corresponding to the earliest dates of the 
1940 surveys, may be regarded as in good agreement with the slight 
alteration of this diagram, expected to represent the effect of diffusion 
during the time from the initial conditions to that of the first cruise of 
the series. 

We shall now attempt to find a solution of equation (27) that satis­
fies the foregoing initial conditions. A well known elementary solution 

lS F(X) exp ( - X2a2t) Jo (Xr) , 
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where F(>..) is an arbitrary function of>.. and J~ is a ~essel function of 
zero order. Summing these elementary solutions "?th respect to >.., 
which is independent of t and r, gives the formal solution 

01) 

t = f F(>..) J 0 (>..r) exp ( - >..2a2t) a>. • 
0 

Fort = 0, we require that 

Joo {ti, T Ti 
F(>..) Jo (>..r) a>. = 

0 , T > Ti 
0 

According to Gray, Mathews and MacRobert (1922: 64-78) 

JOI) {1,a2<1 
Ji (x) Jo (ax) dx = ½, a 2 = 1 . 

O,a2>1 
0 

Therefore, we readily obtain the required formal solution 
01) 

(31) 

(32) 

(33) 

t = ti Ti f Ji (>..ri) Jo (>..T) exp ( - >..2a2t) a>. . (34) 
0 

This is mathematically the same solution as that investigated by 
McEwen (1946: 618) in a problem of diffusion of heat or particulate 
matter from a circular area of concentration. Accordingly, the same 
transformations of the formal equation to expressions adapted to 
numerical work will be restated here: 

t = ti [1 - exp ( - Ti2/4a2t)] , for r = 0, (35) 

t = (ti/2) (1 - Io (Ti2/2a2t) exp ( - Ti2/2a2t)] , for T = Ti, (36) 

t = ti { (1 - exp ( - Ti2/4a2t)] - (T1/2a2t) exp ( - Ti2/4a2t) 
r 

f Ii (rT1/2a2t) exp (- T2/4a2t) dT), (37) 
0 

wher~ I, (x) is the modified Bessel function of the first kind. Also, the 
function e-q, (x), denoted by f, (x), has been calculated for i = Oto 23 
x =: 0 to 20;_the_ results are a_vailable in photostat copies on file at th~ 
Scripps Inst1tut10n. Accordmgly, equation (36) reduces to 

t = (ti/2) [1 - /o (ri2/2a2t)], for T = Ti. (38) 

Equation (37) can be _eva_luated ~y numerical integration. How­
ever, by repea~ed apphcat1on of mtegration by parts McEwen 
(1946: 618) obtamed the expansion t into the convergent se~ies 
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r = r1 l 1 - e -<::~>• [10 (;;~) + (;)1i (;a::) 
+ (;J2

! 2 ( ;::J + · · ·] i~o~ r1 , (39) 

and 
(r-r, )' 

r = r1 e 

(40) 

Having thus obtained a series of values of r as a function of r corre­
sponding to any value of t, the velocity q can be obtained from 

. 
f frdr 

q = _o __ (41) 
r 

by numerical integration. The corresponding formal equation of 
velocity is 

(42) 

0 

which can be reduced to 

(43) 

for r = r1• This equation, which can easily be evaluated from the 
manuscript tables offo(x) andf1(x), serves as a useful check on the fore­
going methods of computation. 

For convenience in carrying out the computations corresponding to 
a series of values oft, required in applications to the observations, the 
formulae were transformed as follows, using the equation r = r18. 
Denoting by { }i the coefficient of ti, equation (39), and by { It the 
coefficient of ti, equation (40), 

8 

q 
= ( r12r1) [ 2 {oh 8d8 ----- , 8 '<: 1 , (44) 
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I 8 

f 2 { }i OdO + f { )2 OdO 
q = 0 I 1 8 > 1 • 

8 

For any value of t, Ti2/4a2t = a constant c. Accordingly, 

{ Ji = 1 - exp ( - c [1 - 8]2) [fo(2c8) + Ofi (2c8) 

[VII, 3 

(45) 

+ 02f2 (2c8) + ... ] , (46) 

{ )2 = 2 exp ( - c[l - 8)2) [(l/8)!1 (2c8) + (1/0)2!2 (2c8) 
+ (l/0)3f3 (2c0) + . .. ) . (47) 

The values of { } i and { } 2 can also be com~uted by means of the single 
equation (37), using the same transformation, thus: 

e 
{[1 - e- <J - 2c J e-c<Hl2 Ji (2c0) d0) , (48) 

0 

which can be evaluated by numerical integration. 

PREDICTION OF VELOCITIES IN CIRCULAR EDDIES BY 
MEANS OF THE FOREGOING MODEL, COMPARED 

WITH THOSE OBSERVED 
Values of the vorticity, r, and the relative velocity, q', as functions 

of the distance, T, were computed by means of the foregoing formulae, 
corresponding to each of the three values of the coefficient of eddy­
viscosity, a2, found by the energy method, and for times, t, equal to 0, 
1, 2, 3, ... 15 days. The value t0 of t, for which the computed 
relative velocities agreed best with the observed relative velocities at 
the earliest survey date of each of the three series of cruises, was found 
by comparing computed and observed graphs. This time, to, is the 
estimated time from the initial condition when r = ti for T < Ti and 
r = 0 for T > T1, corresponding to the first cruise of the series. In all 
three cases, the value 6 was selected for t0• The value of Ti was found 
by inspection of the empirical curves of q plotted against T to be 10 
kilometers for 1940 and 30 kilometers for 1941 (page 194). In each 
case a value was assigned to the constant coefficient (t1T1/2) that showed 
the best agreement between the computed and observed velocities for 
t = to. As already shown on pages 207-209, this coefficient is the 
maximum velocity and corresponds to T = Ti and t = 0. For the 
surfac~, and the 50-meter level, 1940, and the surface, 1941, these 
coefficients were found to have the respective values: 42, 35.3 and 
18 cm/se_c. It re1:1ains to determine the value of t corresponding to 
each crmse by addmg to the first value, 6, the time from the first to the 
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second cruise, from the second to the third, etc., and to evaluate the 
formulae for each value of t thus determined, in order to predict the 
velocity distributions. The three series of such theoretical results 
shown by the curves, Figs. 19-23, 24--28, and 29-33, are to be compared 
with the histograms representing corresponding average velocities 
observed between the indicated values of r. The general agreement 
between theory and observation appears to be sufficiently close to 
prove the thesis offered at the beginning. 

CONCLUDING REMARKS 
Consideration of the problem of large eddies as a whole leads to 

calling attention to certain points not specifically mentioned before. 
First, the basic hydrodynamic equations (page 204) contained no 

term representing the wind stress. This omission is justified because 
the eddies were shown to agree with the principle of the conservation 
of angular momentum, thus implying that the resultant torque of the 
wind stress was zero. 

Second, the equation of vorticity implies that the shearing stress is 
due to the horizontal transport of available initial vorticity. This 
conservative property of vorticity also implies no solenoids in the 
horizontal plane, no vertical velocity or a uniform distribution of 
vertical velocity, and no horizontal convergence or divergence (Pet­
terssen and Austin, 1942: 17-19). 

Third, in a circular vortex the fluid elements or particles move in 
circular orbits around a common axis and all particles lying on one and 
the same circle have one and the same velocity. In the limiting case 
of steady motion, the circles l'J,round the axis are likewise the paths of 
the particles and the lines of fl.ow represent the field of velocity (Bjerk­
nes, 1921: 31). 

Fourth, it follows from equation (41) that <J. + ddg = r. From this, r r 
the integrand in equation (4) of the rate of dissipation of kinetic 
energy can be expressed in the form r (r - 2 q/r) 2, which is a convenient 
expression for direct numerical tabulation, in using the theoretical 
relation of q to r. 

In attempting to apply mathematics to the investigation of any real 
phenomena, it is necessary to devise a simplified model of the phe­
nomena. In such a model, actual conditions are necessarily simplified 
and various details are ignored. The success of this kind of an attack 
depends upon the extent to which essential features of the actual phe­
nomena are preserved, and upon the relative importance of the details 
ignored. If any elements of the mathematical model depart essen-



212 

FIG.II 

,. 

'I~ 
r-,, 

0 I'-

0602030 40 

:;: ~· " .., 

rlG . 21 

0 

0 

I"--

'! L 

0 10 2 0 , o •o 

Journal of Marine Research [VII, 3 

MARCH·~+-1940 
I• 6 
0/500 , 
o1 •l5 alO' 

40 MARCH 20-21 
flG.. 20 I 1940 I 

I • 20 
0/500 
ot•I.S1tO' 

0 

0 I/""'\ 

~n -- r--r-

"° ao 10. •• 90 IOO 

I\ r-

I 10 
r---r I ...... 

r--,--"' 
0 10 20 30 40 "' 60 10 80 90 100 ... 

APf:I IL 2 2 -MAY 3 F' IG. 22 MAY 10-2 1 

1940~+-
I • 54 
0 /500 

19 4 0 
I• 72 - ' -

0/500 
o 2 =1.5 x l0 s o2 • 1.5110 ) 

I 
0 

_;-r-

--........ ,--... 
/ 

!-r-
I' 0 

-=:::, 

-- r-- 1; --,- r-

,0 60 10 BO 90 IC 0 1020304050 60 10 BO 90 100 ... 

30 

.., 
w ~. 
"' .., 

0 

0 

FIG. 23 WAY 27 - JUN( 7 

I 

1940~:f-I • 89 
0 / 500 
0 2 =1.5110 ) 

I 

L r- r---.. 
/ ---,--- r--
l 

;--:--IT 
m m 30 ,o w 10 90 so -

K M 

• w 

Figures 19-23. Curves of theoretical relation of velocity to distance from center of eddies, 
and histograms of velocity corresponding to average distance between lines of Dynamic 
Anomaly curves (current boundary lines). 0 over 600 D ecibars. 1940. 
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tially from the reality, the deductions from it may seriously contradict 
the observations. Since we can not be sure beforehand regarding the 
adequacy of any model that we may devise, we must test it by making 
deductions from it and comparing them with observations. Thus, by 
a trial and error method we may eventually succeed in devising a 
model sufficiently in accord with reality, yet simple enough to deal 
with mathematically. 

It follows from consideration of the various observed features of the 
large eddies, and the corresponding deduced results, that, taken as a 
whole, the evidence is convincing in support of the initialthes is re­
garding large horizontal eddies in the sea off southern California. 

Also, it may be mentioned that, assuming an appropriate initial 
constant low temperature of a circular area of a 60-kilometer radius, 
centered at the center of the surface eddy in 1940, the average tempera­
ture varied with distance from the center, as would be expected from 
the law of lateral diffusion. The surface salinity in 1941 also con­
formed to the same diffusion equation. The coefficients of diffusion 
obtained in this way were respectively, 1.8 x 107 and .54 x 107 c. g. s., 
which are in good agreement with values for this region found by other 
methods (Sverdrup, Johnson and Fleming, 1942: 485). These general 
conclusions imply that the water mass maintains its integrity and 
position. 
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