LITERATURE CITED

BRIAN J. KOPPER, 1,2 DAVID C. MARGOLES, AND RALPH E. CHARLTON, Department of Entomology, Kansas State University, Manhattan, Kansas 66506-4004, U.S.A.

1 Present address: Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
2 Corresponding author.

Submitted for publication 14 August 1999, revised and accepted 25 July 2000.
Larvae were reared in plastic cages cleaned daily, following Freitas (1991). Adults, head capsules and pupal skins are in the collection of the first author. Larval food plant vouchers, identified by Dr. Jorge Tamashiro, have been deposited in the herbarium of the Universidade Estadual de Campinas.

Descriptions of immatures and host plants of Adelpha mythra. The only egg observed was greenish brown, sculptured with hexagonal pits, with spines arising from the pit junctions, consistent with eggs described for other species of Adelpha. The egg was placed on the upper surface of the leaf, near the apex. It was laid rapidly by a startled female, and did not hatch.

First and second instars were not described in detail. The third instar had conspicuous head scoli and a faintly visible variegated pattern that, with few changes, was maintained and intensified through the remaining larval stadium. The fifth instar (Fig. 1) was variegated green, with a pattern of oblique lateral stripes. The green areas changed to light orange as the larvae neared pupation. In the final larval stadium, the body scoli were short and thick, with a dense covering of spines; the scoli on A2 were arched posteriorly. The distribution of the scoli (Fig. 2) was the same as for most Adelpha species. The mature larva was about 25 mm long.

The first through fourth instars initiated feeding at the apex of a leaflet, leaving the midvein intact and extending it with fecula and silk to form “frass chains” (Aiello 1984). They rested upon these structures when not feeding. In addition, they attached dead leaf fragments and clumps of fecula to the base of the chains. When feeding on *Bathyrsa meridionalis*, larvae built “frass chains” on other parts of the same large leaf.

The pupa (Fig. 3A) showed an elongated general profile (about 18 mm long), with segment A2 produced and curved anteriorly, and segment T2 pointed and directed posteriorly. The head horns were pointed and shaped like tiny asymmetrical leaves, curving out from the sides of the head. The general color was brown, with dark lines on the wing pads and no reflective areas.

Mutisia cocinea (Asteraceae), a scendent shrub common in wet second growth habitats, was observed as the larval food plant of *Adelpha mythra* both in Santa Genebra and in the Serra do Japi. In the latter site, *A. mythra* was also reared on *Bathyrsa meridionalis* L. B. Smith & Downs (Rubiaceae), a plant with enormous leaves (up to 1 m in length and width), of montane habitats, where it occurs most often near watercourses. *Bathyrsa meridionalis* is used by many other *Adelpha* species in that site (Brown 1992 and AVLF pers. obs.).

Immatures and host plants of Adelpha syma. The egg was greenish brown, with sculpturing and ornamentation as described for other species of Adelpha, placed on the upper surface of the leaf, near the apex. The length and diameter were about 0.5 mm; the duration was not determined.

The first instar was entirely brown, with pale body setae. The second instar was entirely brown, with a spiny brown head. The body bore short stubby scoli. The final body length was 6 mm. The third and fourth instars showed a clearly visible variegated pattern, with head spines longer. The final lengths were 9 mm in the third and 15 mm in the fourth larval stadium. The fourth and fifth instars had the same general pattern. The fifth instar (Fig. 1) was variegated with green, cream and brown, showing a general pattern of oblique lateral stripes. The green areas changed to light orange before pupation. The body scoli were short and thick, with dense spines, and the scoli of A2 arching posteriorly. The distribution of the scoli was the same as in *A. mythra*.

The fully grown larva was 25 mm long. Data on head capsule widths for all instars are in Table 1. The first through fourth instars constructed frass chains and had a behavior similar to that described for *A. mythra*.

The pupa (Fig. 3B) showed an elongated general profile (about 18 mm long), with segment A2 projecting and curved anteriorly, and segment T2 pointed and directed posteriorly. The head horns were very small and pointed, curved out from the sides of the head. The general color was brown, with dark lines on the wing pads and no reflective areas.

The host plant in the Serra do Japi was *Rubus brasiliensis* Mart. (Rosaceae), a common blackberry of sunny second growth habitats, especially in montane sites. *Rubus rosifolius* Sm., an introduced species, is also used as larval food in other montane sites in SE Brazil.

Positions within Adelpha. The scolius shape and the general pattern of the larvae, and the general form of the pupae, suggest

Table 1. Head capsule widths of Adelpha syma.

<table>
<thead>
<tr>
<th>Instar</th>
<th>Range (mm)</th>
<th>Mean</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>0.56-0.58</td>
<td>0.57</td>
<td>0.011</td>
<td>7</td>
</tr>
<tr>
<td>2°</td>
<td>0.78-0.82</td>
<td>0.80</td>
<td>0.014</td>
<td>5</td>
</tr>
<tr>
<td>3°</td>
<td>1.18-1.22</td>
<td>1.18</td>
<td>0.042</td>
<td>6</td>
</tr>
<tr>
<td>4°</td>
<td>1.64-2.03</td>
<td>1.81</td>
<td>0.151</td>
<td>13</td>
</tr>
<tr>
<td>5°</td>
<td>2.73-3.12</td>
<td>2.89</td>
<td>0.133</td>
<td>11</td>
</tr>
</tbody>
</table>
that both *Adelpha mythra* and *A. syma* belong to the Species-Group VII of Aiello (1984). The immatures of both species are very similar to those of *A. cocala*, the main difference being that the A2 process of the pupa is much longer in *A. mythra* and more arched in *A. syma* than in *A. cocala* (Fig. 3C). In *A. mythra*, the length of the A2 projection approaches the condition observed in *A. phylaca* (as described by Müller 1886) (Fig. 3D), a species belonging to Group II of Aiello (1984). However, the T2 projections of *A. mythra* and *A. syma* are sloped posteriorly, and not curved upward as in Group II pupae, giving pupae in the two groups distinctive general appearances. The papal head horns of *A. mythra* (Fig. 3A) are similar in shape to those of *A. cocala* (Fig. 3C), but are farther apart at their bases and are more tapered. The head horns of *A. syma* (Fig. 3B) are similar to those of *A. phylaca* (Fig. 3D), but are more curved.

Additional species of *Adelpha* need to be reared in order to clarify the scenario based on the morphology of the immatures and to make a cladistic analysis possible. Some species groups are based on only one, two or three species, and the immatures of many common species remain to be discovered, or their descriptions are not sufficiently detailed to permit assignment to a species-group. Additional descriptions of *Adelpha* immatures with figures are important, especially when they show apparent deviations from the eight known species groups (Aiello 1984). Basically the species of *Adelpha* can be sorted into rubiaceous feeders and non-rubiaceous feeders. Four examples of species feeding on both Rubiaceae and other families have been reported (*A. serpa, A. boreas tizona, A. syma* and *A. cocala*), and *A. mythra* is the fifth recorded case. Although interesting, this pattern must be considered with caution, because some plant identifications need to be confirmed by additional field observations.

Host plant use. Among the Nymphalidae, the association with Asteraceae as larval food plants is found in only a few groups (especially Melitaeinae and Acraeinae) (Ackery 1988, Freitas 1991).

The record of Asteraceae as a larval host of the Limenitidinae represents a new plant family for neotropical *Adelpha*. Larvae of *Adelpha* species have been recorded as feeding on Aquifoliaceae, Asteraceae, Bombacaceae, Caprifoliaceae, Combretaceae, Ericaceae, Fagaceae, Flacourtiaceae, Icacinaceae, Malpighiaceae, Melastomataceae, Moraceae, Ochnaceae, Piperaceae, Rosaceae, Rubiaceae, Tiliaceae, Ulmaceae, Urticaceae, Verbenaceae and Vochysiaceae (Jones & Moore 1883, Müller 1886, Moss 1833, Biezanko et al. 1966, Aiello 1984, 1991, DeVries 1987, Ackery 1988, Brown 1992, Otero & Aiello 1996, Diniz & Moraes 1997, Constantino 1998, and this work). Some themes may be recognized in the different species-groups (Aiello 1984). Basically the species of *Adelpha* can be sorted into rubiaceous feeders and non-rubiaceous feeders. Four examples of species feeding on both Rubiaceae and other families have been reported (*A. serpa, A. boreas tizona, A. syma* and *A. cocala*), and *A. mythra* is the fifth recorded case. Although interesting, this pattern must be considered with caution, because some plant identifications need to be confirmed by additional field observations.

Acknowledgments

This study was conducted as part of a Ph.D. Thesis on Nymphalidae systematics and evolution. K. Willmott, Deane Bowers and an anonymous referee reviewed and made helpful critics and comments on the manuscript. This research was supported by fellowships from the Brazilian CNPq to AVLF and KSB.

Fig. 3. Pupae of *Adelpha mythra* (A), *A. syma* (B), *A. cocala* (C) and *A. phylaca* (D) (*A. phylaca* redrawn from Aiello, 1984, in a different scale; the bar means 7.3 mm).

ANDRÉ VICTOR LUCI FREITAS, KEITH S. BROWN, JR., Museu de História Natural, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas, São Paulo, Brazil, and ANNETTE AIELLO, Smithsonian Tropical Research Institute, Box 2072, Balboa, Ancon, Panama.

Received for publication 9 August 1999; revised and accepted 2 October 2000.

LITERATURE CITED