Over time, each scientific discipline passes through moments that alter its focus and course. One such defining moment for the study of butterflies and moths came in 1947, when the Lepidopterists' Society was hatched at Harvard University under the watchful tutelage of Charles Lee Remington and Harry Kendon Clench (the Society’s home base moved shortly thereafter to Yale University, where Charles continued to shepherd the fledgling group through its early metamorphoses in the 1950s). Today, nearly half a century later, the Lepidopterists’ Society still prospers even as some other similar organizations have waxed and waned. In no small part, the Society can trace its vitality to a long tradition of fostering collegial interaction among all segments of its membership. Harry and Charles both personified this commitment to “... facilitating the exchange of specimens and ideas by both the professional worker and the interested amateur ...” (from their letter of 24 March 1947 inaugurating the Lepidopterists’s Union, as the Society was initially known).

The idea for a Remington issue of the Journal of the Lepidopterists’ Society began to take shape early in 1992. At the time, I was in the midst of planning a mid-year bash in New Haven for Charles, who was retiring as Professor of Biology and Forestry & Environmental Studies, and Curator of Entomology at the Peabody Museum, after 44 years of service to Yale University. In that context, it seemed appropriate to acknowledge Charles’ contributions to the Society via the Journal, as had been done posthumously for Harry in 1980. The authors who have contributed herein are all students of Charles’ at one or another level, or several levels, and their papers stem from talks presented in an honorarial symposium at that 1992 event (they have been given
latitude to depart somewhat in style and substance from the straight
and narrow).

In introducing this issue, I will omit a biography of Charles and the
earliest history of the Society, as both are available elsewhere e.g., in
the Lepidopterists' Society Commemorative Volume (1945–1973) and
Issue 2, Volume 34 of the Journal for 1980. Rather, I would like to
point briefly to a few aspects of Charles' persona that I feel have helped
him contribute so richly to lepidopterology, and science in general. A
foreshortened bibliography of Charles' principal scholarly publications

I should make it clear from the outset that, although he is nominally
and officially "retired," I would scarcely consider Charles to be "retir­
ing" in even the remotest sense of the word. That label will never fit
the man. As I write this, he is: completing a third year of developing
and teaching a new and popular course on endangered species with
Tim Clark at the Yale School of Forestry & Environmental Studies;
preparing a book on lepidopteran conservation with Bob Pyle;
inau­
gurating baseline arthropod sampling surveys in a new shoreline park
that he helped to establish in the city of New Haven; assisting in the
launch of the Connecticut Butterfly Atlas Project, a five-year effort to
record and georeference the occurrence of the state's butterfly fauna;
researching novel aspects of insect color vision with Gary Bernard at
the Yale School of Medicine. . . . I'll stop there arbitrarily.

Take note of three themes interwoven in the paragraph above: (1)
Charles habitually innovates and explores uncharted territory; (2) he
has diverse and eclectic pursuits; and (3) he draws himself and others
into synergistic collaboration. These characteristics, along with his broad
base of acquired comparative biological knowledge (he is indeed one
of those rare naturalists with a world perspective on most groups of
living creatures), have for years enabled Charles to energize people of
all stripes. In the lead article below, Ward Watt, one of Charles' first
graduate students, defines, analyzes and discusses the importance of
this "Remingtonian tradition" as an empowering paradigm for men­
toring and conducting research. Evidence for Charles' success with this
model can be seen in Table 1, which lists students who obtained their

FIG. 1. Remingtonian reminiscences. Clockwise from top: a reunion in 1992 for Bob
Pyle (left), Charles Remington (center), and Lincoln Brower (right); the mimeographed
News of May 1947, first publication of the Lepidopterists’ Society; adult Celerio lineata
(Fabr.) and friends lined up in tribute; the poet, Robert Frost, absorbing a few pointers
on hybridization theory from Charles in the collection rooms at the Peabody Museum of
Natural History, Yale University. Photography courtesy of Paul and Sandy Russell, Wil­
 liam Sacco, and Charles.
Table 1. Intellectual progeny of Charles Remington. In the first group, an asterisk indicates a partially completed Ph.D. degree. In the middle group, an asterisk indicates non-Ph.D. degrees (mostly Masters). In the last group, an asterisk indicates that a more advanced degree was also obtained subsequently (when known). The degrees were obtained primarily from the Biology (formerly Zoology) Department and the School of Forestry & Environmental Studies at Yale University. This list is derived from departmental records at Yale, and from Charles' files and recollections.

<table>
<thead>
<tr>
<th>Individual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. degrees (Remington as principal advisor)</td>
<td></td>
</tr>
<tr>
<td>Shigeru A. Ae</td>
<td>Evolutionary genetics of Colias</td>
</tr>
<tr>
<td>Peter F. Bellinger</td>
<td>Soil fauna, Collembola</td>
</tr>
<tr>
<td>Denis E. Berube*</td>
<td>Insects and bird behavior</td>
</tr>
<tr>
<td>Barbara J. Hibbs (Blake)</td>
<td>Environmental physiology of ground squirrels</td>
</tr>
<tr>
<td>Jane Van Zandt Brower (Dingman)</td>
<td>Experimental analysis of mimetic butterflies</td>
</tr>
<tr>
<td>Lincoln P. Brower</td>
<td>Evolutionary biology of the Papilio glaucusgroup</td>
</tr>
<tr>
<td>William S. Brown*</td>
<td>Ecology of mountain goats</td>
</tr>
<tr>
<td>Donald S. Chambers*</td>
<td>Evolutionary biology of Speyeria</td>
</tr>
<tr>
<td>Frances S. Chew (Bryan)</td>
<td>Pierid butterfly relations with cruciferous plants</td>
</tr>
<tr>
<td>Christopher J. Durden</td>
<td>Roach paleontontology</td>
</tr>
<tr>
<td>Lawrence F. Gall</td>
<td>Evolutionary ecology of Catocala</td>
</tr>
<tr>
<td>Edward L. Goldstein</td>
<td>Ecology of Thimble Island ants</td>
</tr>
<tr>
<td>John P. Kochmer*</td>
<td>Biochemical evolution in Chauliognathus</td>
</tr>
<tr>
<td>Toni Lincks (Taylor)*</td>
<td>Sexual morphology in Lepidoptera</td>
</tr>
<tr>
<td>Lesley A. Morgan-Thompson</td>
<td>Pollinator ecology of milkweed beetles</td>
</tr>
<tr>
<td>Russell B. Miller</td>
<td>Evolutionary ecology of Colorado Aquilegia</td>
</tr>
<tr>
<td>Russell M. Norton*</td>
<td>Ecology of cave crickets</td>
</tr>
<tr>
<td>Charles G. Oliver</td>
<td>Geographic and genetic distance in Lepidoptera</td>
</tr>
<tr>
<td>Carolyn M. Osborne</td>
<td>Predation ecology of marine snails and crabs</td>
</tr>
<tr>
<td>Roger W. Pease, Jr.</td>
<td>Evolutionary genetics of Utetheisa</td>
</tr>
<tr>
<td>Robert M. Pyle</td>
<td>Lepidoptera conservation</td>
</tr>
<tr>
<td>William N. Ryerson*</td>
<td>Larval foodplant choice in Manduca</td>
</tr>
<tr>
<td>Ward B. Watt</td>
<td>Evolutionary genetics and physioloby of Colias</td>
</tr>
<tr>
<td>Richard E. Wetzler</td>
<td>Ecology and movement in terrestrial arthropods in the Bahamas</td>
</tr>
<tr>
<td>Paul F. Whitehead*</td>
<td>Locomotory physiology and genetics of Cercopithecus monkeys</td>
</tr>
<tr>
<td>Bruce A. Wilcox*</td>
<td>Conservation ecology of insects</td>
</tr>
<tr>
<td>Individual</td>
<td>Subject</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Carol A. Abruzzese*</td>
<td>Pitcher plant pollinators</td>
</tr>
<tr>
<td>Robin Absher</td>
<td>Molecular geography of Lemur fulvus</td>
</tr>
<tr>
<td>George D. Amato</td>
<td>Molecular biology of vertebrate conservation</td>
</tr>
<tr>
<td>Diane M. Beaudoin</td>
<td>Adaptive divergence of Drosophila behavior</td>
</tr>
<tr>
<td>Peter P. Blanchard*</td>
<td>Island entomofauna of Maine</td>
</tr>
<tr>
<td>Richard L. Borowsky</td>
<td>Size and growth rates in fish</td>
</tr>
<tr>
<td>Andrew Van Zandt Brower</td>
<td></td>
</tr>
<tr>
<td>Philip V. Brylski*</td>
<td>Danaid butterfly systematics</td>
</tr>
<tr>
<td>Alice Louise Bull</td>
<td>Biogeography of island owls</td>
</tr>
<tr>
<td>Joan R. Burchenal*</td>
<td>Drosophila embryology</td>
</tr>
<tr>
<td>Adalgisa Caccone (Powell)</td>
<td></td>
</tr>
<tr>
<td>Tchaw-ren Chen</td>
<td>Karyology of teleost fish</td>
</tr>
<tr>
<td>Terry L. Chester*</td>
<td>Experimental analysis of mantid predation</td>
</tr>
<tr>
<td>Raymond D. Clarke</td>
<td>Autecology of Fowler’s toad</td>
</tr>
<tr>
<td>Marlene B. Cole*</td>
<td>Alien desert flora and Welwitschia in Namibia</td>
</tr>
<tr>
<td>W. Floyd Conner*</td>
<td>Territorial ecology of dragonflies</td>
</tr>
<tr>
<td>Matthew A. Cronin</td>
<td>Molecular systematics of deer</td>
</tr>
<tr>
<td>Dean R. Cummins</td>
<td>Troglobitic crayfish</td>
</tr>
<tr>
<td>David C. Culver</td>
<td>Cave Collembola</td>
</tr>
<tr>
<td>Change-feng Dai</td>
<td>Coral biology in southern Taiwan</td>
</tr>
<tr>
<td>Amy R. Dumas*</td>
<td>Nature interpretive education</td>
</tr>
<tr>
<td>Michael Gregonis*</td>
<td>Museum entomology, Lepidoptera</td>
</tr>
<tr>
<td>Melissa M. Grigione*</td>
<td>African and other manatees</td>
</tr>
<tr>
<td>Achyut Gyawali*</td>
<td>Natural history museum design for Nepal</td>
</tr>
<tr>
<td>Mark Harding*</td>
<td>Museum entomology, Coleoptera</td>
</tr>
<tr>
<td>Willard D. Hartman</td>
<td>Sponges of Long Island Sound</td>
</tr>
<tr>
<td>Daniel J. Howard</td>
<td>Evolutionary ecology of crickets</td>
</tr>
<tr>
<td>Jennifer A. Jacoby*</td>
<td>Nature preserve interpretive education</td>
</tr>
<tr>
<td>Michael S. Johnson</td>
<td>Stickleback fish molecular genetics</td>
</tr>
<tr>
<td>Charles J. Kara*</td>
<td>Mountain top African insects</td>
</tr>
<tr>
<td>Individual</td>
<td>Subject</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Robert H. MacArthur</td>
<td>New England warbler niche ecology</td>
</tr>
<tr>
<td>Pamela H. Manice*</td>
<td>Neotropical fig insects</td>
</tr>
<tr>
<td>Frederick A. B. Myerson*</td>
<td>Human populations</td>
</tr>
<tr>
<td>Christopher D. Nagano*</td>
<td>Tiger beetle and Lepidoptera museology</td>
</tr>
<tr>
<td>Paul E. Olsen</td>
<td>Triassic fossil ecology</td>
</tr>
<tr>
<td>Eric J. Olson</td>
<td>Sphinx moth classification</td>
</tr>
<tr>
<td>Katherine J. Patey*</td>
<td>Coyote museology</td>
</tr>
<tr>
<td>Naomi E. Pierce</td>
<td>Ant-tended lycaenid larval ecology</td>
</tr>
<tr>
<td>Stan P. Rachootin</td>
<td>Charles Darwin's embryology</td>
</tr>
<tr>
<td>V. Louise Roth</td>
<td>Gigantism and dwarfism in island vertebrates</td>
</tr>
<tr>
<td>Stephen I. Rothstein</td>
<td>Ecology of cowbird egg patterns</td>
</tr>
<tr>
<td>Kathleen M. Scott</td>
<td>Bovid adaptive allometry</td>
</tr>
<tr>
<td>James B. Shaklee</td>
<td>Costa Rica sphinx moth ecology</td>
</tr>
<tr>
<td>James H. Shaw</td>
<td>Red wolf biology and conservation</td>
</tr>
<tr>
<td>Eric J. Siy*</td>
<td>Museum science</td>
</tr>
<tr>
<td>Jennifer B. Slade (Belovsky)*</td>
<td>Insects of Isle Royale</td>
</tr>
<tr>
<td>Triono Soendoro*</td>
<td>Hormones and steriodogenic ovarian signals</td>
</tr>
<tr>
<td>Eleanor J. Sterling</td>
<td>Madagascar Aye-aye biology</td>
</tr>
<tr>
<td>Geerat J. Vermeij</td>
<td>Evolution of shell form in molluscs</td>
</tr>
<tr>
<td>Laurie R. Walter</td>
<td>Limb adaptation in fossil dicynodonts</td>
</tr>
<tr>
<td>George E. Watson III</td>
<td>Island biography of Aegean birds</td>
</tr>
<tr>
<td>David A. West</td>
<td>Transisthmian bigeminate crabs</td>
</tr>
<tr>
<td>Jane M. Whitehill*</td>
<td>Aroid pollinators</td>
</tr>
<tr>
<td>Gary Wolinsky*</td>
<td>Museum entomology, Diptera</td>
</tr>
<tr>
<td>Carol A. Yoon</td>
<td>Triassic paleoentomology</td>
</tr>
<tr>
<td>Yale undergraduate Senior Honors Theses</td>
<td>The environmental movement</td>
</tr>
<tr>
<td>Braden R. Allenby '72*</td>
<td>Ants and seed predator insects in Colorado Helianthella</td>
</tr>
<tr>
<td>Elizabeth M. S. Andrews '94</td>
<td>Garter snake biogeography</td>
</tr>
<tr>
<td>Kenneth K. Asplund '61*</td>
<td>Foodplant biology of Chrysomelidae</td>
</tr>
<tr>
<td>May R. Berenbaum '75*</td>
<td>Coyote and wolf skull comparisons</td>
</tr>
<tr>
<td>Individual</td>
<td>Subject</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Linda Carr '62</td>
<td>Papilio biology, insect palatability to birds</td>
</tr>
<tr>
<td>Jonathan A. Coddington '73*</td>
<td>Papilio biology, insect palatability to birds</td>
</tr>
<tr>
<td>Sara I. Cohen '94</td>
<td>Spider paleontology</td>
</tr>
<tr>
<td>John R. Cooley '90</td>
<td>Global population, male sexual attitudes</td>
</tr>
<tr>
<td>John G. Coutsis '56</td>
<td>Biochemical phylogeny of insect orders</td>
</tr>
<tr>
<td>Bruce E. Davis '83</td>
<td>Antillean lepidopterology</td>
</tr>
<tr>
<td>Mark W. Dickinson '78</td>
<td>Butterfly geography, vertebrate biomechanics</td>
</tr>
<tr>
<td>Alice W. Doolittle '89</td>
<td>Paleobiology, medical bioengineering</td>
</tr>
<tr>
<td>Michael A. Dora '89</td>
<td>Manual for museum education</td>
</tr>
<tr>
<td>L. F. Boker Doyle '53</td>
<td>Field ecology of caddisflies</td>
</tr>
<tr>
<td>Thomas P. Ducker '75</td>
<td>Butterflies of Fisher Island</td>
</tr>
<tr>
<td>Barbara Gastel '74</td>
<td>Arthropods and evolution</td>
</tr>
<tr>
<td>James R. Gorman '87*</td>
<td>The DNA age in society</td>
</tr>
<tr>
<td>William L. Krinsky '67*</td>
<td>Human behavioral immunology</td>
</tr>
<tr>
<td>Frederick D. Krupp '75</td>
<td>Insects and medicine</td>
</tr>
<tr>
<td>Katarzyna S. Kubzdela '90</td>
<td>Legal solutions to environmental crises</td>
</tr>
<tr>
<td>Krista L. Longnecker '93</td>
<td>Wolf ecology</td>
</tr>
<tr>
<td>Thomas E. Lovejoy III '64*</td>
<td>Marine invertebrate ecology, Limulus vision</td>
</tr>
<tr>
<td>Timothy D. Male '92</td>
<td>Spring territory in Nymphalis</td>
</tr>
<tr>
<td>Ryan W. McCue '95</td>
<td>Entomofauna of Greater Gull Island</td>
</tr>
<tr>
<td>Adam C. Messer '80*</td>
<td>Insect soil fauna of Phragmites</td>
</tr>
<tr>
<td>Andrew O. Miller '93</td>
<td>Insects of Moluccan islands</td>
</tr>
<tr>
<td>Adam R. Moore '92</td>
<td>Arizona entomology</td>
</tr>
<tr>
<td>N. Ronald Morris '55*</td>
<td>Experiments with insects and pesticides</td>
</tr>
<tr>
<td>Daniel P. Muhonen '57</td>
<td>Tyrosine-tyrosinase control of Cynthia wing patterns</td>
</tr>
<tr>
<td>Eugenia F. deS. Naro '94</td>
<td>Butterflies of Idaho, Colorado, and Arizona</td>
</tr>
<tr>
<td>Thomas Niemann '79</td>
<td>Sea turtle biology in Brazil</td>
</tr>
<tr>
<td>Alfred T. Ogden '94</td>
<td>Entomogeography of Newfoundland</td>
</tr>
<tr>
<td>Krista L. Olson '92</td>
<td>Hybrid experimental analysis of birch and aspens</td>
</tr>
<tr>
<td>David C. Oren '74*</td>
<td>Endangered sea turtles, biomedicine</td>
</tr>
<tr>
<td>Gustav Paulay '79*</td>
<td>Insect biology, Hyrax ethology</td>
</tr>
<tr>
<td>Dan Perlman '81*</td>
<td>Insects of Rapa Island</td>
</tr>
<tr>
<td></td>
<td>Pacific island Odonata</td>
</tr>
<tr>
<td>Individual</td>
<td>Subject</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Judy Penny '62</td>
<td>Insect palatability to Colorado birds</td>
</tr>
<tr>
<td>Jennifer Pett-Ridge '93</td>
<td>Insect cave biology</td>
</tr>
<tr>
<td>James W. Porter '69*</td>
<td>Colorado moth biology</td>
</tr>
<tr>
<td>Robert A. Raguso '87*</td>
<td>Molecular genetics of butterflies</td>
</tr>
<tr>
<td>Megan M. Reilly '95</td>
<td>Endangered species of island organisms</td>
</tr>
<tr>
<td>Jessica R. Ruvinsky '95</td>
<td>Pollination and genetics in Colorado Delphinium</td>
</tr>
<tr>
<td>Benjamin A. Salisbury '92</td>
<td>Insect conservation in Cape Cod</td>
</tr>
<tr>
<td>Gail C. Schwartz '74*</td>
<td>Yankee sexuality</td>
</tr>
<tr>
<td>Aaron P. Scott '89</td>
<td>Diagnostic tools for human digestive disorders</td>
</tr>
<tr>
<td>Mary M. Shaffer '86</td>
<td>Plant ecology of Pelham Bay Park</td>
</tr>
<tr>
<td>Janine E. Shissler '91</td>
<td>Geographic ecology of muskrat skulls</td>
</tr>
<tr>
<td>Sacha H. Spector '93</td>
<td>Palatability of tropical roaches</td>
</tr>
<tr>
<td>Pamela C. Steele '79</td>
<td>Physiology in marine stress environments</td>
</tr>
<tr>
<td>Krenin K. Stowe '81</td>
<td>Bush medicine</td>
</tr>
<tr>
<td>Matthew M. Taylor '92</td>
<td>Environmental activism, fungus culture</td>
</tr>
<tr>
<td>Wendy Todaro '89</td>
<td>African mammal biology, biomedicine</td>
</tr>
<tr>
<td>Scott W. Wing '76*</td>
<td>Tertiary paleontomology</td>
</tr>
</tbody>
</table>
TABLE 2. Estimated present holdings of the collections amassed by Charles Remington and his associates in the Entomology Division at the Peabody Museum of Natural History, Yale University. From a 1990 collections survey conducted by divisional staff. Numbers are rounded, inc = incomplete.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Estimated Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entotrophi</td>
<td>inc</td>
</tr>
<tr>
<td>Microcoryphia</td>
<td>inc</td>
</tr>
<tr>
<td>Thysanura</td>
<td>inc</td>
</tr>
<tr>
<td>Ephemeroidea</td>
<td>260</td>
</tr>
<tr>
<td>Odonata</td>
<td>4,440</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>520</td>
</tr>
<tr>
<td>Embiaria</td>
<td>10</td>
</tr>
<tr>
<td>Dermaptera</td>
<td>310</td>
</tr>
<tr>
<td>Blattaria</td>
<td>1,200</td>
</tr>
<tr>
<td>Isoptera</td>
<td>70</td>
</tr>
<tr>
<td>Mantodea</td>
<td>340</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>3,600</td>
</tr>
<tr>
<td>Phasmatoidea</td>
<td>130</td>
</tr>
<tr>
<td>Gryllobattodea</td>
<td>1,450</td>
</tr>
<tr>
<td>Zoraptera</td>
<td>10</td>
</tr>
<tr>
<td>Corrodentia</td>
<td>20</td>
</tr>
<tr>
<td>Phthiraptera</td>
<td>10</td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>20</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>23,520</td>
</tr>
<tr>
<td>Megaloptera</td>
<td>510</td>
</tr>
<tr>
<td>Raphidiodea</td>
<td>240</td>
</tr>
<tr>
<td>Neuroptera</td>
<td>5,040</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>114,400</td>
</tr>
<tr>
<td>Strepsiptera</td>
<td>90</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>36,740</td>
</tr>
<tr>
<td>Mecoptera</td>
<td>400</td>
</tr>
<tr>
<td>Diptera</td>
<td>46,780</td>
</tr>
<tr>
<td>Siphonaptera</td>
<td>inc</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,970</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>250,030</td>
</tr>
<tr>
<td>unsorted</td>
<td>27,790</td>
</tr>
<tr>
<td>Semi-curated holdings (all groups)</td>
<td>279,850</td>
</tr>
<tr>
<td>Acquired since 1990 (all groups)</td>
<td>105,000</td>
</tr>
<tr>
<td>Estimated total</td>
<td>904,750</td>
</tr>
</tbody>
</table>

university degrees and/or initial training under his guidance, including their topic of research at the time.

Charles has also always stressed the importance of collecting and collections as irreplaceable tools for exploring evolutionary processes. The nearly one million specimens in the Entomology Division at the Yale Peabody Museum largely reflect four decades of effort on the part of Charles, his students and colleagues. Peabody ranks among the two dozen largest entomological collections in the United States and Canada (see S. E. Miller, 1991, American Entomologist 37:79; and Table 2). However, size alone does not guarantee that a collection will signifi-
cantly advance science. Charles knew this well when he began as Curator of Entomology in the 1950's, and he set out to acquire material on the philosophy that a university collection must serve as a resource that contributes intimately to the dual missions of teaching and research.

Toward that goal, Charles amassed collections at Peabody that offer taxonomic breadth for comparative work, taxonomic depth for microevolutionary studies, and in general illustrate ecological or evolutionary principles by emphasizing patterns of naturally occurring variation in invertebrate populations. To paraphrase him on these three points: be sure you keep at least one specimen of each different taxon that you have the opportunity to collect or acquire; make large collections of different exemplary taxa from several geographic parts of their ranges; sample as many taxa as possible from unique habitats and ecosystems (e.g., island chains, bogs, ridgetops); and sample for unusual evolutionary characteristics and intrigue (e.g., polymorphs, gynandromorphs, size variants). Although the Lepidoptera are certainly the strongest suit in the Peabody collections, Charles' acquisition philosophy has yielded synoptic or better representation of most arthropod groups, often down to the family or generic level.

Charles has also sought specimen material with special theoretical, historical and/or regional significance, and maintained particular vigilance for collections either "orphaned" or in various states of divestiture. Thus, for example, Peabody has significant holdings in the insect groups (e.g., Abraxas moths, corixid bugs) that caught the eye of the late G. Evelyn Hutchinson, a close friend of Charles' and a principal architect of much of modern-day ecological and evolutionary theory. Peabody also recently became home for the entomological collections of the United States Forest Service's Northeastern Experiment Station (85,000 specimens; rich in parasitic hymenopterans), and the Lepidoptera collection of the Bridgham family from Rhode Island (1,800 specimens; a source utilized for type descriptions by W. H. Edwards, A. R. Grote, and their contemporaries in the 19th century). Because of Charles' close involvement in the early decades of the Lepidopterists' Society, the Peabody is also the repository, in whole or part, for the personal collections of a number of lepidopterists (including, for example: M. M. Cary, S. A. Hessel, C. G. Oliver, T. R. Manley, F. E. Rutkowski, D. B. Stallings and J. E. Turner, and H. P. Wilhelm).

As you browse through this issue you will spot a number of personal testimonials by the authors. I'll confess too. My parents were always in cahoots with Charles. This makes it difficult to pinpoint a first event, but certainly my die had been irretrievably cast by 1968, when as a pre-teen I was propelled into summer sleepaway camp in the wooded Berkshires of Massachusetts with a net and copies of the classic Nearctic
works by Klots and Holland. That July, by chance, the cabin of eight boys included a fellow by the name of Jeff Ingraham, who, to my sheer astonishment and delight, proved to be another incipient lepidopterist of equal conviction. Five more summers in the Berkshires followed. Each summer found the two of us again sharing a cabin, generally haranguing our bunkmates with larval escapees, endless latinized names, and tales of pre-dawn forays into the camp’s “automats”—the brightly lit bathrooms that invariably attracted the choicest moths (Jeff, I still kick myself knowing you snagged that *Sthenopis auratus* Grote one step ahead of me!).

To close the circle, it turned out that Jeff’s independent source of inspiration was his pediatrician, Dave Winter, a colleague of Charles’ and a longtime active member in the Lepidopterists’ Society (including Editor of the *News* from 1980–1982). So, matters quickly became hopelessly entangled, for as Jeff and I began to meet other lepidopterists, there didn’t seem to be a one among them who hadn’t crossed paths with Charles. Before going away to the west coast in the mid 1970s for college, I did volunteer work at the Peabody Museum pinning specimens, joined the Lepidopterists’ Society, and got swept into the excitement of the newly formed Xerces Society. I left without a doubt in my mind that I would somehow eventually return to work with Charles on a doctoral project. That came to pass, and our close collaboration continues to date. I can’t thank him enough for his guidance and wisdom over the years. Charles, on behalf of the authors and your many other friends and associates, it is an honor and pleasure to dedicate this issue of the *Journal* to you. Long may The Rem’s net keep swinging!

Abridged Bibliography of Charles Lee Remington

——. 1971. Natural history and evolutionary genetics of the California Channel Islands. Discovery 7:2–18.

